
Softmax Bottleneck Makes  
Language Models Unable to Represent 

Multi-mode Word Distributions

Haw-Shiuan Chang      Andrew McCallum



Outline

• Introduction


• Theoretical Analysis


• Method


• Experiments


• Conclusion and Future Work

2



Outline

• Introduction


• Theoretical Analysis


• Method


• Experiments


• Conclusion and Future Work

3



Sampling Distributions from Large LMs
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Large  
Language Model (LM) Sampling

• Assist creative writing 
(Akoury et al., 2020) 

• Reduce the cost of building 
datasets (West et al., 2021)

• Generate codes 
(Li et al., 2022)

……

• Solve math problems 
(Cobbe et al., 2021)

John goes to 

Input
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…

Next Word Distribution



Can large LMs learn any 
distribution over the next word?
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An Ambiguous Context
Context Future

Choices
After debating whether to bow to the king or 
the woman first, the jester decided on the

GPT-2
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Most of Existing Approaches
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Predicting “woman” as the Next Word
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State



Could GPT-2 Predict Both “woman” and “king”  
as the Next Word?
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No, if there are some words between them 
and GPT-2 has only one hidden state
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Learning analogical 
word embedding 

structure

Ranking next word 
arbitrarily

Contradict
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{V Words

…

Softmax Bottleneck (Yang et al., 2018)

• If V>D, we cannot output arbitrary probabilities over V words

• Limitations


• Serious among which words?


• Affect the top words? If yes, when?


• Disappears after making D>V?
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D Dimensional Word 
Embedding Space

One Hidden State Next Word Distribution

…

Yang, Zhilin, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. "Breaking the Softmax Bottleneck: A High-Rank RNN Language Model." In ICLR. 2018.



{
Our Theoretical Improvements

• If N words are in a small subspace, we cannot rank N words arbitrarily

• Improvements


• Serious among which words?             -> Among words in a small subspace


• Affect the top words? If yes, when?    -> Yes. When the ideal distribution is multi-mode


• Disappears after making D>V?           -> No, if some words are in a small subspace
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D Dimensional Word 
Embedding Space

V Words

One Hidden State Next Word Distribution

…

woman

king

queen
man



A Limitation of Single Embedding
Theorem 1 (simplified): If many word embeddings are linearly 
dependent, the softmax in a LM cannot rank the words arbitrarily

Example: If “woman - man = queen - king”, GPT-2 cannot rank the word 
woman and king as the top 2 words
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Linear Algebra Intuition: N+1 words are linear dependent ➡  
They are in subspace with d < N ➡ cannot have arbitrary probabilities

Example: If “UMass = 0.2 University + 0.2 Massachusetts”, GPT-2 cannot 
rank a rare word UMass on top of the similar popular words University and 
Massachusetts (Demeter et al., 2020).

David Demeter, Gregory Kimmel, and Doug Downey. Stolen probability: A structural weakness of neural language models. In ACL. 2020



Approximately Linearly Dependent

15

Theorem 2 (simplified): If many word embeddings are approximately 
linearly dependent and the magnitude of the hidden state has a 
upperbound, the softmax in a LM cannot assign very small 
probabilities to some words

Example: If “woman + king = queen + man + ε”, GPT-2 cannot make the 
logits of queen and man much smaller than the logits of king and woman

Example: If “woman = man + ε”, GPT-2 cannot make the logits of man 
much smaller than the logits of woman

Intuition:    hT king + hT woman = hT queen + hT man + hT ε, and we can 
ignore hT ε if ||h|| and ||ε|| are both small
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GPT-2 (Softmax)

 

GPT-2 encoder……
After debating whether to bow to the king or the woman first, the jester decided on the
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dot product

Mixture of Softmax (Yang et al., 2018) 
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A new bottleneck
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Mixture of Softmax (MoS) is one of 
the few effective modifications for 
Transformer (Narang et al., 2021)

Sharan Narang, et al. Do transformer modifications transfer across 
implementations and applications? EMNLP 2021

Yang, Zhilin, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. 
"Breaking the Softmax Bottleneck: A High-Rank RNN Language Model." 
In International Conference on Learning Representations. 2018.

Facet embeddings



dot product

MoS + Multi-input
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Multiple Partitions

 

GPT-2 encoder……
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Multi-facet Softmax (MFS)

dot product
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Multi-facet Softmax (MFS) Perplexity

Improvement of MFS over Softmax is around 15% between GPT-2 
Small and GPT-2 Medium (with 3x parameters)
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Multiple input 
hidden states help

Multiple partitions 
help

Only adding 
nonlinearity is not 
enough (Parthiban 

et al., 2021)

Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka, and Shuichi Adachi. Sigsoftmax: Reanalysis of the softmax bottleneck. In NeurIPS 2018

Dwarak Govind Parthiban, Yongyi Mao, and Diana Inkpen. On the softmax bottleneck of recurrent language models. In AAAI 2021



Examples

the

end
Elastic

Softmax
E

EC

the
there

CSI
Softmax

law

Paris Berlin

Softmax

France Germany

Candidates have an analogical relation: 

Perplexity 2.3 -> 1.7

Top 10% most diverse facets:

3x Improvement

Worse word similarity (Non-English text in 
OpenWebText): 2.5x Improvement

End
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Conclusion
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Theory

David Demeter, Gregory Kimmel, and Doug Downey. Stolen probability: A structural weakness of neural language models. In ACL. 2020

Stolen Probability 
(Demeter et al., 2020)

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. "Breaking the Softmax Bottleneck: A High-Rank RNN Language Model." In ICLR. 2018.

Softmax Bottleneck 
(Yang et al., 2018)

Multi-mode Distribution 
(Ours)

Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka, and Shuichi Adachi. Sigsoftmax: Reanalysis of the softmax bottleneck. In NeurIPS 2018
Dwarak Govind Parthiban, Yongyi Mao, and Diana Inkpen. On the softmax bottleneck of recurrent language models. In AAAI 2021

Generalization

• Multi-mode distribution must 
exist if some word embeddings 
are in a small subspace

Method

MoS  
(Yang et al., 2018)

MFS (Ours)

Adding Nonlinearity  
(Kanai et al., 2018)

Improvement

• We propose two enhancements for 
mixture of softmax (MoS)

Analysis

Softmax bottleneck cannot 
explain the improvement of MoS 

(Parthiban et al., 2021)

Multi-mode is a good 
explanation (Ours)

Explanation

• Our proposed method improves 
softmax layer in GPT-2 
especially when the ideal next 
word distribution is multi-mode



Future Work
• How much MFS could help huge language models (e.g., GPT-3)


• Whether MFS could improve 


• NLU tasks


• NLG tasks


• Other extreme classification models using an output softmax layer


• The word similarity should be context dependent rather than globally fixed
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BERT Experiment

• Perplexity improvement of MoS and MFS is much smaller compared to GPT-2
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GPT-2 Small
After debating whether to bow 
to the king or the woman first, 
the jester decided on the

Input LM Ideal Output

king or woman

After debating whether to bow to 
the king or the woman first, the 
jester decided on the [MASK], 
which makes him pleased.

BERT Base king

• MFS still doubles the improvement of MoS over Softmax



ProtoQA

30

GPT-2 MediumName something that people usually 
do before they leave for work.

Input LM Ideal Output

Shower     0.43
Breakfast  0.30
Dress        0.07
Lock door  0.07
…



Proof Sketch
• Linearly dependent among {wl1,…, wlL, wr1,…, wrR}


• al1 wl1 + … + alL wlL = ar1 wr1 + … + arR wrR


• All coefficient ali > 0, arj > 0


• WLOG al1 + … + alL ≥ ar1 + … + arR


• al1 hT wl1 + … + alL hT wlL = ar1 hT wr1 + … + arR hT wrR 

• If ∃h, s.t mini(hT wli) > maxj(hT wRj) 

• al1 hT wl1 + … + alL hT wlL ≥  
(al1 + … + alL)mini(hT wli) > 
(ar1 + … + arR)maxj(hT wRj) ≥  
ar1 hT wr1 + … + arR hT wrR (→ ←) 


• Thus, the logits of LM cannot rank all the left words 
on top of the right words.
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• 1 wking - 1 wqueen = 1 wman - 1 wwoman


• 1 wking + 1 wwoman = 1 wqueen + 1 wman  

 
 

• 1 hT wking + 1 hT wwoman = 1 hT wqueen + 1 hT wman 

• If ∃h, s.t min(hT wking, hT wwoman) > max(hT wqueen, hT wman) 

• 1 hT wking + 1 hT wwoman ≥  
2 min(hT wking, hT wwoman) >  
2 max(hT wqueen, hT wman) ≥  
1 hT wqueen + 1 hT wman (→ ←)


• Thus, the logits of LM cannot rank both king and woman 
on top of queen and man

× h (hidden state) on both side

Generalization
Large SmallLarge Small

Large

Small

Large

Small


