Background:

» Traditional ensembles of multiple BERT models boost performance on

Multi-CLS BERT:
An Efficient Alternative to Traditional Ensembling

Introduction

natural language understanding tasks over single models

* However, traditional ensembles are expensive

- Computational cost, memory, space footprint

Research question:

Can we achieve the benefits of ensembling while minimizing the cost?

— Proposed method:

Ensemble multiple CLS embeddings within a single BERT model

Proposed
Multi-CLS BERT

Fine-tuning: Once

Classic

5 BERT Ensemble

Fine-tuning: 5 Times

Main Result
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GLUE SuperGLUE
Configuration | Model Name | Model Size | | 100 1k Full 100*  1k* Full
Pretrained 109.5M 55.71 71.67 82.05 | 57.18 61.55 65.04
+062  +0.15 +008 | 4043 +£037 + 036
MTL 109.5M 59.29 73.26 83.307 | 57.50 6294 66.33
+027  +0.13 +007 | +041 +036 + 033
Ours (K=1) 111.3M 57.84 7328 83.40 | 57.31 63.35 66.29
+032  +0.13 4+007 | +035 +0.18 +0.18
BERT Ours (K=5, A = 0) 118.4M 61.54 74.14 83.41 | 58.29 63.71 66.80
Base +032  +0.12 +007 | 4+033 +026 + 025
Ours (K=5, A = 0.1) 118.4M 61.80 74.10 83.47 | 58.20 63.61 66.74
+035  +0.13 4+005 | +031 +027 + 0.26
Ours (K=5, A = 0.9) 118.4M 6049 74.02 83.47 | 5841 63.78 66.80
+035  +0.12 +008 | +038 +025 + 0.24
Ours (K=5, A =1) 118.4M 59.86 73.75 83.43 | 57.84 63.56 66.39
+034  +0.14 +007 | +£040 4022 +0.22
MTL 335.2M 61.39 75.30 84.13 | 59.03 65.21 69.16
+037  +027 +011 | +054 4038 + 037
Ours (K=1) 338.3M 59.19 75.35 84.59 | 57.35 64.67 69.24
+043  +£021 +007 | +042  +043 + 0.41
Ours (K=5, A = 0) 350.9M 63.19 75.73 84.51 | 59.46 6543 69.56
BERT +049  +026 +005 | +044 +038 + 031
Ours (K=5, A = 0.1) 350.9M 64.24 76.27 84.61 | 59.88 65.58 70.03
Large +040  +0.12 + 0.08 +043 4026 + 0.25
Ours (K=5, A = 0.9) 350.9M 63.02 7595 8449 | 5942 6584 69.79
+042  +0.10 +008 | +034 +025 + 025
Ours (K=5, A =1) 350.9M 62.07 75.85 84.61 | 58.74 65.00 69.04
+045  +0.17 +007 | 4+050 4029 + 027

Inference: Once Inference: 5 Times

Conclusion 1:

Conclusion 2:
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Figure 1: Proposed method.

Pretraining

Learn multiple, diversified CLS embeddings:

— Adapt state-of-the-art pretraining objectives for BERT
(Aroca-Ouellette and Rudzicz, 2020)

Learn to represent fine-grained semantics:
— Incorporate hard negatives into the objective

« Model size (Table 1)
* Inference time (Table 4)

Easy Negative Sequences Postive Sequence

Hard Negative Sequence

« Overlap of most uncertain dataset examples (
 Qualitative analysis of nearest-neighbor embeddings (Paper appendix): Multiple CLS
embeddings can learn to contribute in complementary ways to solving a task

Multi-CLS BERT is especially effective in the few-shot setting.

Analysis

Claim 1: Increased performance is due to ensemble effects.
- Ensembling Multi-CLS BERT only slightly boosts the performance (Table 2)
« Expected calibration error (Table 4)

Table 1: Results on GLUE and SuperGLUE for models derived from BERT Base and BERT Large.

Efficient Multi-CLS BERT improves performance over baseline single BERT model and K=1
model with only small increase in model size.

able 3)

Claim 2: Using Multi-CLS BERT vs. traditional ensemble reduces computational costs at the
expense of a modest drop in performance.

GLUE SuperGLUE* GLUE* 100 GLUE* 1k
Model | Modfilr D;S?nrglon v Kli 516035 7111;8 517030 62”;4 Multi-CLS vs ENS 32.57 41.35
etraine : . : :
BERT+ [ Baselines MLM only 1 | 5538 7074|5739 61.77 Dropout vs ENS S1.17 .00
Linear Layers BERT Transformer + Linear Layers BERT Transformer + Linear Layers (BERT CMTL+ 1 | 5865 7257 | 56.88 62.63 Least vs ENS 39.57 48.85
e p———— Base)  MLM + SO + TFIDF i gcg).gg Z?; Z?? 2;.8(5) ENS vs ENS 38.67 50.14
in the batch MIL ' ' ' g ' 2 Table 3: Overlap ratio of the 20% most uncertain
No Inserted I | 358.06 73.18 | 57.97 63.3 dataset examples as predicted by the two given
Layers 5 | 60.12 73.35 | 56.46 62.00 models (“ENS” = traditional ensemble).
Sec. 24 No Hard 1 | 5844 7330 | 57.19 63.33 Conclusion: “Multi-CLS vs. ENS” overlap ratio
Past1 Negative 5 | 61.77 74.18 | 58.89 63.86 approaches “ENS vs. ENS”.
Ours Sum Aggregation 5 | 58.87 7394 | 57.41 63.82
(BERT 1 57.76 73.30 | 57.53 63.22
) Dart 2 Base) Default 3 | 61.09 7395|5785 63.31 Inference | GLUE* (ECE)
Pg:{tr-;e BERT Transformer + Linear Layers (Sec. 2.5) 5 | 62.62 74.49 | 58.82 63.86 Time (s) 100 1k
' 10 | 60.99 73.59 | 58.25 62.82
Ours (K=1 0.2918 | 25.22 19.32
< SWA 1 | 57.31 7291 - - ( ) + 00002 | +1.99 + 1.64
Hard Part3 Ensemble on Dropouts 1 | 5845 72.86 E Ours (K=5, A =0.1) 0.3119 | 1546 17.01
N‘:’%?:;ve A Sampled Se in a Batch 1 60.07 75.20 - =2 LD —
ampled medtenes A Ensemble on FT Seeds ' ' Ensemble of Ours (K=1) | 1.4590 | 13.85 10.80
: . 5 ]63.34 7535 - - +00012 | 4097 +0.88
Figure 3: Pretraining method. No Hard 1 |60.36 75.69 | 58.47 65.04 , N
Ours . Table 4: Inference time vs. expected calibration error
Negative 5 | 6323 7577 | 60.33 65.75
(BERT 1 | 60.01 76.03 | 57.38 65.10 (ECE).
Large) Default ' ‘ ' ‘ Conclusion: Multi-CLS BERT with K=5 achieves
5 | 6433 76.38 | 59.99 65.51 significantly lower ECE than the same model with

Architecture

- Instead of traditional single BERT CLS embedding, leverage a fixed number of
multiple CLS embeddings:

— Insert K special CLS tokens
— Use the K final-layer CLS hidden states to represent the input text
— Aggregate the K CLS embeddings during fine-tuning/inference

* Prevent collapse of the multiple CLS embeddings:
— Insert linear layers in between selected BERT layers at multi-CLS input positions
— Add novel parameterization

Finetuning Pretraining (Sec. 2.1-2.4)
(Sec. 2.6)
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Figure 2: Architecture.

Table 2: Ablation studies for the few-shot setting.
Conclusion: Architecture and pretraining methods improve GLUE
scores (and SuperGLUE almost as consistently). Traditional
ensembles can achieve somewhat higher performance.

GPT-like LM decoder for NLG

- Completion

Conclusion

- Using multiple CLS embeddings in a single BERT model with our architecture and pretraining
methodologies results in almost free performance gain

 Evidence suggests that performance gains are due to ensemble effects without the cost of a
traditional ensemble of multiple models

- Our methods for successfully implementing diversified multiple CLS embeddings may be
extensible in future studies of efficient ensembling using other types of architectures
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