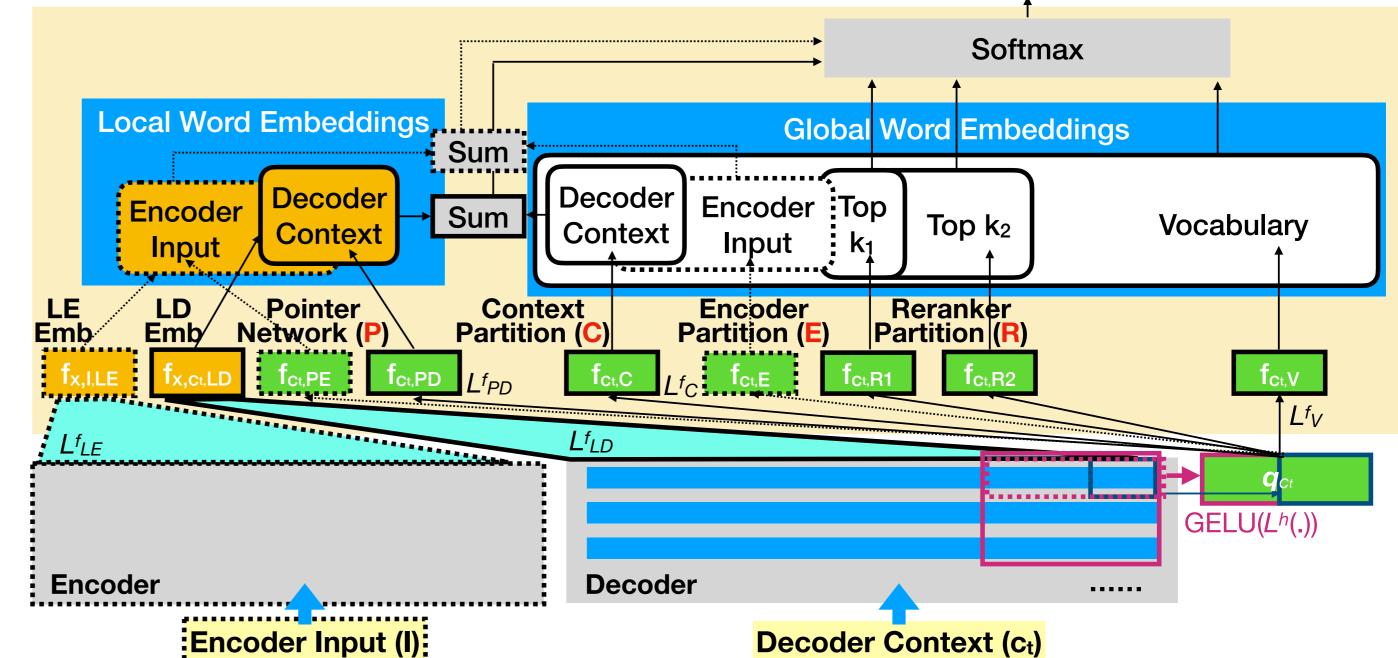
Revisiting the Architectures like Pointer Networks to Efficiently Improve the Next Word Distribution, Summarization Factuality, and Beyond Haw-Shiuan Chang^{*1, 2}, Zonghai Yao^{*1}, Alolika Gon¹, Hong Yu¹, Andrew McCallum¹ ¹CICS, University of Massachusetts, Amherst, ²Amazon Alexa AI

Manning College of Information **UMassAmherst** & Computer Sciences

Introduction

Background & Motivation

1. Can Large LM Learn to Output Arbitrary Next Word Distribution? NO

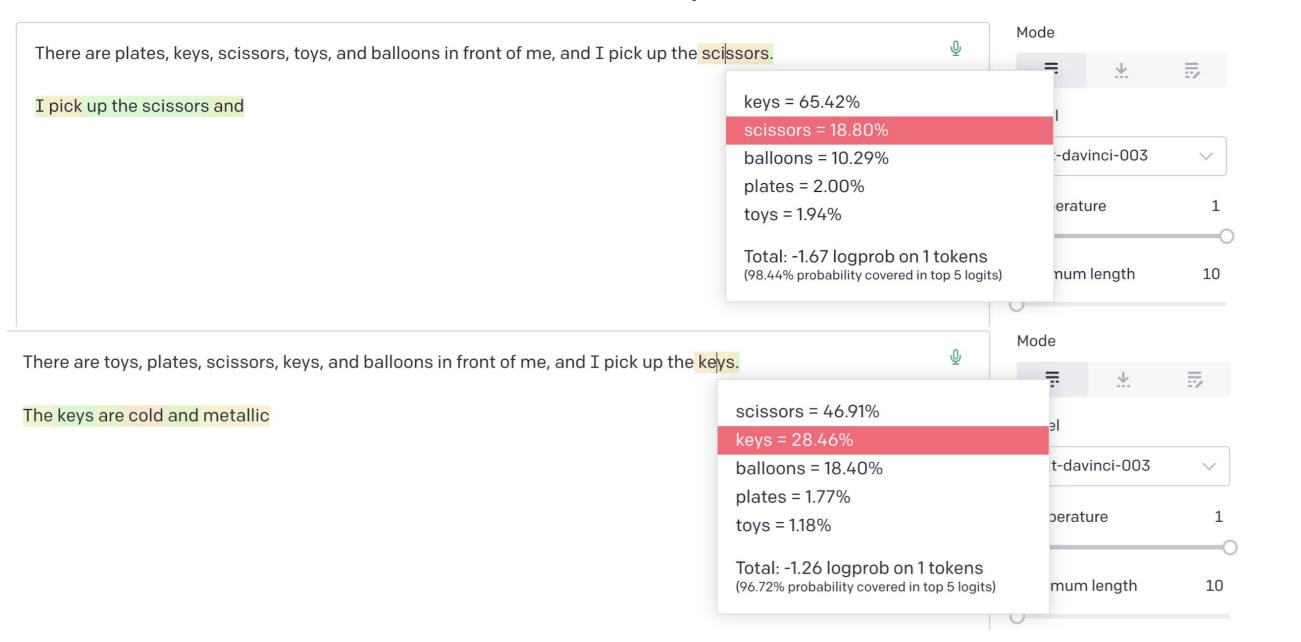

There are **plates**, **keys**, **scissors**, **toys**, and balloons in front of me, and I pick up the ...

- There are **plates**, **keys**, **scissors**, **toys**, and **balloons** in front of me, and I pick up the ...
- Ideal distribution

• tovs

- plates ~0.2
- keys
- scissors ~0.2

- phone (from GPT-2)?
- Hallucination
- Should copy but not copy
- I like tennis, baseball, golf, basketball, and



Repetition

• • •

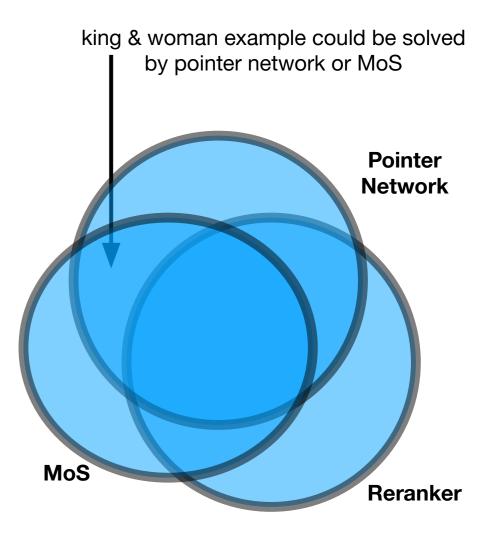
Should not copy but copy

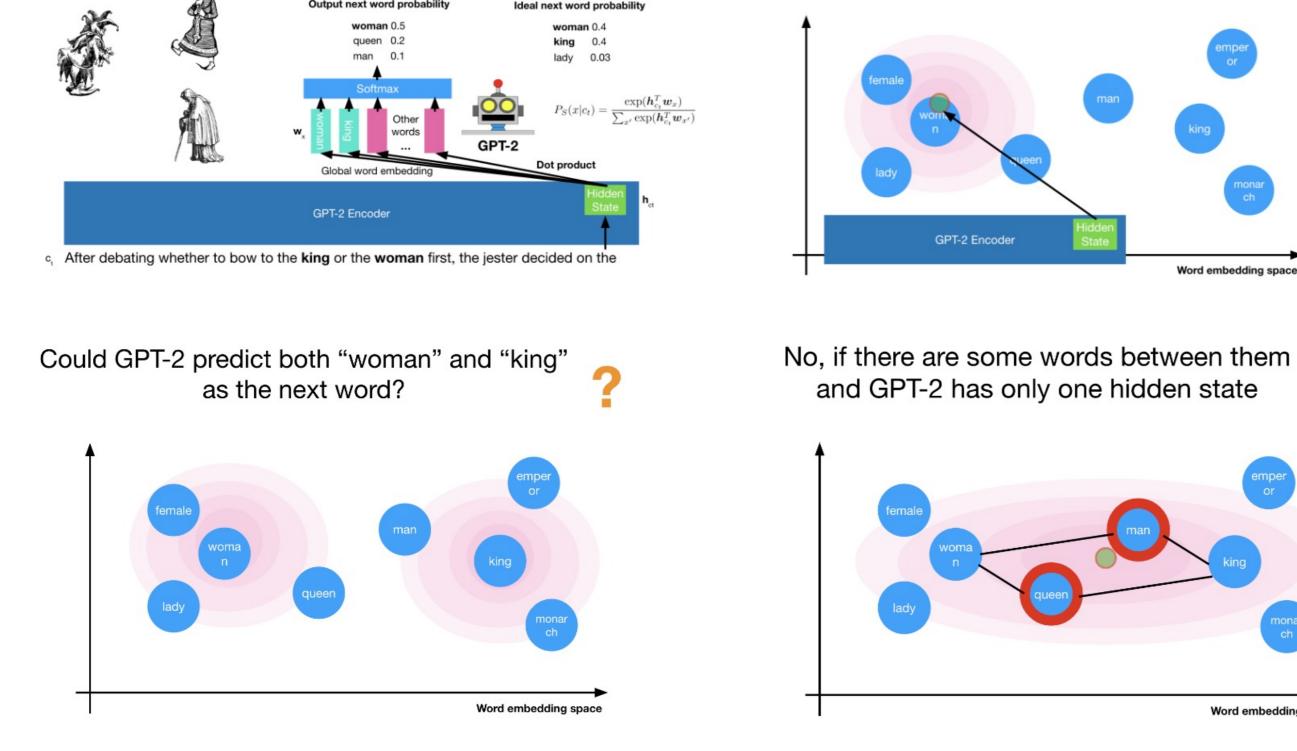
GPT3.5's output

2. Why is Softmax Unable to Learn to Copy Properly (Chang and McCallum, 2022)?

Softmax Bottleneck Ideal next word probabilit

Predicting "woman" as the Next Word 🗸


Figure 2: Architectures of our method for T5/BART that computes Logit_{CEPR}. In GPT-2, we use same architecture except that we take the 3x3 input hidden state block rather than the 1x3 block and there are no encoder-related components, which are marked by dotted lines.


Experimental Results

Mi

GPT-2 Perplexity Comparison

GPT-2 Small							
Size	Time (ms)	$OWT (\downarrow)$	Wiki (↓)				
125.0M	82.9	18.96	24.28				
130.9M	85.6	18.74	24.08				
126.2M	130.2	18.97	24.10				
133.3M	133.2	18.68	23.82				
126.2M	106.0	18.67	23.70				
126.2M	94.1	18.70	23.79				
132.1M	90.4	18.67	24.03				
133.3M	101.1	18.69	23.93				
132.1M	94.8	18.48	23.56				
133.3M	99.1	18.58	23.66				
133.3M	111.2	18.43	23.43				
133.3M	98.0	18.48	23.53				
134.5M	113.3	18.46	23.48				
136.8M	119.9	18.43	23.42				
139.2M	165.1	18.39	23.29				
	125.0M 130.9M 126.2M 133.3M 126.2M 126.2M 126.2M 132.1M 132.1M 133.3M 133.3M 133.3M 133.3M 133.3M 133.3M 133.3M	SizeTime (ms)125.0M82.9130.9M85.6126.2M130.2133.3M133.2126.2M106.0126.2M94.1132.1M90.4133.3M101.1132.1M94.8133.3M99.1133.3M111.2133.3M98.0134.5M113.3136.8M119.9	SizeTime (ms)OWT (\downarrow)125.0M82.918.96130.9M85.618.74126.2M130.218.97133.3M133.218.68126.2M106.018.67126.2M94.118.70132.1M90.418.67133.3M101.118.69132.1M94.818.48133.3M101.118.69132.1M94.818.48133.3M101.118.58133.3M99.118.58133.3M98.018.43134.5M113.318.46136.8M119.918.43				

• Contributions:

- 1. We propose a series of efficient softmax alternatives that unify the ideas of pointer network, reranker, multiple embeddings, and vocabulary partitioning.
- 2. We evaluate the proposed softmax alternatives in text completion tasks and summarization tasks using various metrics to identify where our methods improve the most.
- 3. Our experiments indicate pointer networks and our proposed alternatives can still improve the modern transformer-based LMs. By breaking the softmax bottleneck, our methods learn sometimes to copy the context words to reduce generation hallucination and sometimes exclude the context words to reduce the repetition.

Figure 3: This table shows that dynamic partitioning are very helpful in terms of perplexity. Lower perplexity is better

Summarization Experiments

Improve BookSum more

• Probably because the names in narrative text are usually locally defined

	CNN/DM			XSUM		BookSum Paragraph			SAMSUM							
Model Name	R1	CIDEr	factCC	MAUVE	R1	CIDEr	factCC	MAUVE	R1	CIDEr	factCC	MAUVE	R 1	CIDEr	factCC	MAUVE
T5-Small																
Softmax (S)	38.255	0.442	0.462	0.861	28.713	0.446	0.254	0.939	16.313	0.083	0.424	0.328	39.472	0.817	0.577	0.898
CopyNet (Gu et al., 2016)	37.990	0.438	0.482	0.865	28.573	0.442	0.274	0.940	16.666	0.092	0.439	0.402	39.525	0.853	0.579	0.924
PG (See et al., 2017)	37.913	0.442	0.467	0.874	28.777	0.450	0.257	0.931	16.432	0.088	0.429	0.376	32.451	0.585	0.552	0.153
PS (Merity et al., 2017)	38.058	0.444	Comp	arable t	o som	e .4 <u>7</u> 5	0.267	0.932	16.408	0.090	0.436	0.205	38.731	0.817	0.578	0.865
S + R:20	37.881	0.433				.440	0.256	0.931	16.336	0.086	0.431	+ 30%	39.073	0.752	0.579	0.847
S + E	38.137	0.441	rerai	nker me	linous	.444	0.272	0.942	16.542	0.090	0.435	0.390	39.056	0.784	0.579	0.904
S + CE	38.461	0.460	0.475	0.874	29.155	0.464	0.270	0.948	16.628	0.093	0.436	0.403	40.055	0.835	0.583	0.943
S + CER:20	38.346	0.450	0.482	0.890	29.067	0.459	0.276	0.942	16.638	0.093	0.436	0.400	40.505	0.846	0.580	0.915
S + CEPR:20	38.807	0.456	0.481	0.877	29.395	0.474	0.273	0.942	16.894	0.098	0.440	0.418	40.127	0.891	0.582	0.946
S + CEPR:20 + Mi	38.675	0.451	0.475	0.878	29.348	0.470	0.275	0.946	16.738	0.096	0.438	0.426	40.328	0.874	0.582	0.932
T5-Base																
Softmax (S)	40.198	0.504	0.478	0.907	33.571	0.667	0.249	0.979	16.761	0.096	0.424	0.467	44.348	1.046	0.574	0.986
CopyNet (Gu et al., 2016)	39.940	0.507	0.484	0.903	33.557	0.666	0.253	0.979	16.918	0.101	0.430	0.531	44.141	1.052	0.570	0.973
PG (See et al., 2017)	39.982	0.489	0.485	0.911	33.605	0.663	0.255	0.982	16.611	0.095	0.423	0.463	37.597	0.784	0.548	0.140
PS (Merity et al., 2017)	40.018	0.495	0.483	0.914	33.638	0.672	0.249	0.983	16.905	0.100	0.428	0.504	43.098	1.008	0.575	0.946
S + CEPR:20	40.354	0.511	0.487	0.919	33.700	0.675	0.260	0.980	16.997	0.100	0.432	0.549	44.860	1.064	0.573	0.963
S + CEPR:20 + Mi	40.510	0.506	0.481	0.918	33.853	0.683	0.263	0.983	16.975	0.101	0.431	0.546	44.488	1.055	0.576	0.980

Figure 4: The performance on test sets of four summarization datasets.

Conclusion

Methods: Softmax-CPR

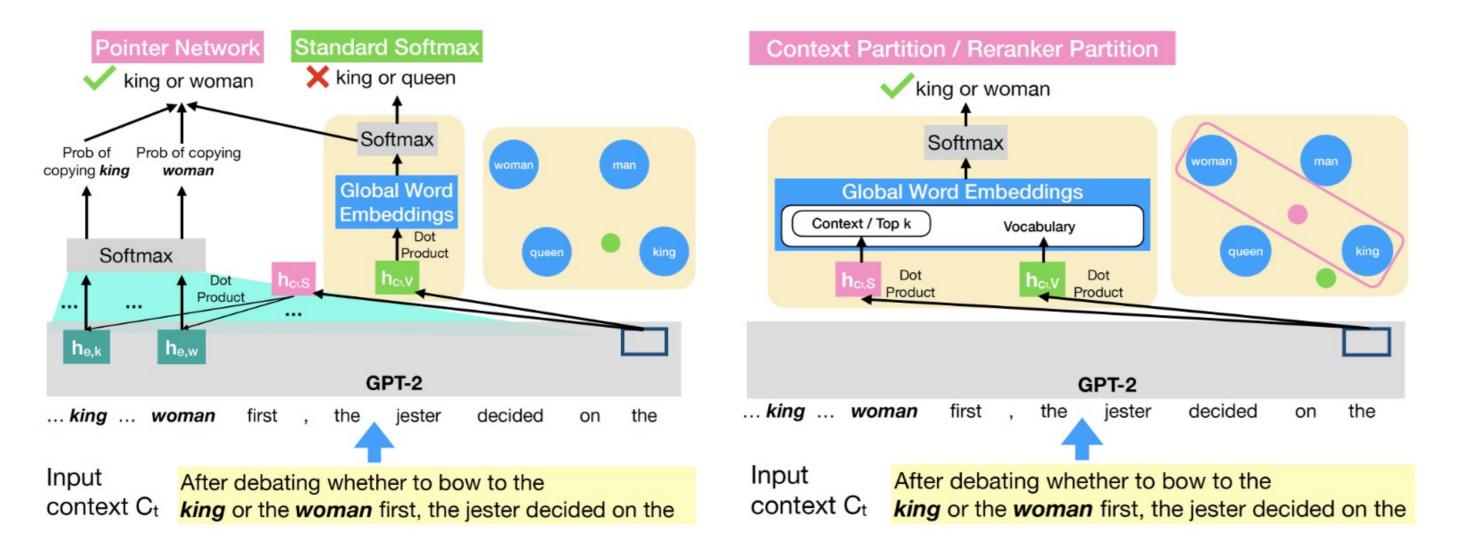


Figure 1: Left: Illustration of the softmax bottleneck and pointer network. Right: We simplify the pointer network / reranker by using another embedding $\mathbf{h}_{c_t,S}$ for the words in the context / the top-k likely words.

1. We propose softmax-CPR and softmax-CEPR, which unify the ideas of the pointer network, reranker, and mixture of softmax (MoS) (a) Alleviate hallucination and repetition problem (b) mostly by learning to copy the words from context properly 2. Pointer networks significantly boost summarization factuality (a) their improvements mainly come from breaking the softmax bottleneck rather than its attention mechanism

(b) Softmax-CPR could bring even more improvements

Reference

Chang, Haw-Shiuan, and Andrew McCallum. "Softmax bottleneck makes language models unable to represent multi-mode word distributions." Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2022.