Revisiting the Architectures like Pointer Networks to Efficiently Improve the Next Word Distribution, Summarization Factuality, and Beyond

Haw-Shiuan Chang^{*}, Zonghai Yao^{*}, Alolika Gon, Hong Yu, Andrew McCallum

Can Large LM Learn to Output Arbitrary Next Word Distribution?

A Simple Example

- Ideal distribution
 - ~0.2 • plates
 - ~0.2 • keys
 - scissors ~0.2
 - ~0.2 • toys
 - balloons ~0.2

• There are plates, keys, scissors, toys, and balloons in front of me, and I pick up the ...

GPT3.5's Output

There are plates, keys, scissors, toys, and balloons in front of me, and I pick up the scissors.

<mark>I pick</mark> up the scissors and

There are toys, plates, scissors, keys, and balloons in front of me, and I pick up the keys.

Hallucination and Repetition

- There are plates, keys, scissors, toys, and balloons in front of me, and I pick up the ...
 - phone (from GPT-2)?
 - Hallucination
 - Should copy but not copy
- I like tennis, baseball, golf, basketball, and ...
 - tennis (from GPT-2)?
 - Repetition
 - Should not copy but copy

No No

Why is GPT Unable to Learn to Copy Properly?

GPT-2 cannot predict both "woman" and "king" as the next word

After debating whether to bow to the king or the woman first, the jester decided on the

Chang, Haw-Shiuan, and Andrew McCallum. "Softmax bottleneck makes language models unable to represent multi-mode word distributions." In ACL 2022.

Softmax

After debating whether to bow to the king or the woman first, the jester decided on the

Mixture of Softmax (MoS)

Context Partition

After debating whether to bow to the king or the woman first, the jester decided on the

Context + Reranker Partition

After debating whether to bow to the king or the woman first, the jester decided on the

11

+ Pointer Network

After debating whether to bow to the king or the woman first, the jester decided on the

Gu, Jiatao, Zhengdong Lu, Hang Li, and Victor OK Li. "Incorporating Copying Mechanism in Sequence-to-Sequence Learning." In ACL 2016.

12

After debating whether to bow to the king or the woman first, the jester decided on the

Softmax CEPR

14

Experiments

GPT-2 Perplexity Comparison

		GPT-2 S			
Model Name	Size	Time (ms)	0		
Softmax (GPT-2)	125.0M	82.9			
Softmax + Mi	130.9M	85.6			
Mixture of Softmax (MoS) (Yang et al., 2018)	126.2M	130.2			
MoS + Mi (Chang and McCallum, 2022)	133.3M	133.2			
Pointer Generator (PG) (See et al., 2017)	126.2M	106.0			
Pointer Sentinel (PS) (Merity et al., 2017)	126.2M	94.1			
Softmax + R:20 + Mi	132.1M	90.4			
Softmax + R:20,100 + Mi	133.3M	101.1			
Softmax $+ C + Mi$	132.1M	94.8			
Softmax + P + Mi	133.3M	99.1			
PG + Mi	133.3M	111.2			
PS + Mi	133.3M	98.0			
Softmax + CR:20,100 + Mi	134.5M	113.3			
Softmax + CPR:20,100 + Mi	136.8M	119.9			
MoS + CPR:20,100 + Mi	139.2M	165.1			

Summarization Experiments

- Improve BookSum more

	CNN/DM				XSUM			BookSum Paragraph			SAMSUM					
Model Name	R 1	CIDEr	factCC	MAUVE	R1	CIDEr	factCC	MAUVE	R1	CIDEr	factCC	MAUVE	R1	CIDEr	factCC	MAU
T5-Small																
Softmax (S)	38.255	0.442	0.462	0.861	28.713	0.446	0.254	0.939	16.313	0.083	0.424	0.328	39.472	0.817	0.577	0.89
CopyNet (Gu et al., 2016)	37.990	0.438	0.482	0.865	28.573	0.442	0.274	0.940	16.666	0.092	0.439	0.402	39.525	0.853	0.579	0.92
PG (See et al., 2017)	37.913	0.442	0.467	0.874	28.777	<u>0</u> .450	0.257	0.931	16.432	0.088	0.429	0.376	32.451	0.585	0.552	0.15
PS (Merity et al., 2017)	38.058	0.444	Comp	arable t	o som	e .435	0.267	0.932	16.408	0.090	0.436	0 205	38.731	0.817	0.578	0.86
S + R:20	37.881	0.433	roror	akor mo	thode	.440	0.256	0.931	16.336	0.086	0.431	+ 30%	39.073	0.752	0.579	0.84
S + E	38.137	0.441	rerar	iker me		.444	0.272	0.942	16.542	0.090	0.435	0.390	39.056	0.784	0.579	0.90
S + CE	38.461	0.460	0.475	0.874	29.155	0.464	0.270	0.948	16.628	0.093	0.436	0.403	40.055	0.835	0.583	0.94
S + CER:20	38.346	0.450	0.482	0.890	29.067	0.459	0.276	0.942	16.638	0.093	0.436	0.400	40.505	0.846	0.580	0.91
S + CEPR:20	38.807	0.456	0.481	0.877	29.395	0.474	0.273	0.942	16.894	0.098	0.440	0.418	40.127	0.891	0.582	0.94
S + CEPR:20 + Mi	38.675	0.451	0.475	0.878	29.348	0.470	0.275	0.946	16.738	0.096	0.438	0.426	40.328	0.874	0.582	0.93
T5-Base																
Softmax (S)	40.198	0.504	0.478	0.907	33.571	0.667	0.249	0.979	16.761	0.096	0.424	0.467	44.348	1.046	0.574	0.98
CopyNet (Gu et al., 2016)	39.940	0.507	0.484	0.903	33.557	0.666	0.253	0.979	16.918	0.101	0.430	0.531	44.141	1.052	0.570	0.97
PG (See et al., 2017)	39.982	0.489	0.485	0.911	33.605	0.663	0.255	0.982	16.611	0.095	0.423	0.463	37.597	0.784	0.548	0.14
PS (Merity et al., 2017)	40.018	0.495	0.483	0.914	33.638	0.672	0.249	0.983	16.905	0.100	0.428	0.504	43.098	1.008	0.575	0.94
S + CEPR:20	40.354	0.511	0.487	0.919	33.700	0.675	0.260	0.980	16.997	0.100	0.432	0.549	44.860	1.064	0.573	0.96
S + CEPR:20 + Mi	40.510	0.506	0.481	0.918	33.853	0.683	0.263	0.983	16.975	0.101	0.431	0.546	44.488	1.055	0.576	0.98

Probably because the John in one book is different from the John in another book

Conclusion

- Softmax bottleneck
 - -> hallucination and repetition problems
- Breaking the softmax bottleneck
 - softmax (MoS)
- Pointer networks + rerankers + MoS
 - -> softmax-CPR and softmax-CEPR

-> improvements from pointer networks, rerankers, and mixture of

Our Other Work on Improving Single Embedding Representation

GPT-like LM decoder for NLG

H.-S. Chang*, R.-Y. Sun*, K. Ricci*, and A. McCallum, "Multi-CLS BERT: An Efficient Alternative to Traditional Ensembling" ACL, 2023 H.-S. Chang, "Modeling the Multi-mode Distribution in Self-Supervised Language Models, "PhD Thesis 2022

BERT-like LM encoder for NLU

How NL{G,U}? So? Future Work: Variable Assignment

- LM on code examples: Codex (OpenAI), AlphaCode (DeepMind)
- LM on math examples:

Stanislas Polu¹ Jesse Michael Han¹ Kunhao Zheng² Mantas Baksys³ Igor Babuschkin¹ Ilya Sutskever¹

Formal Mathematics Statement Curriculum Learning

Training Verifiers to Solve Math Word Problems

Jacob Hilto

Christopher Hesse

Jerry Tworel John Schulma

OpenAI

How NL{G,U}? So? Future Work: Variable Assignment

- LM on code examples: Codex (OpenAI), AlphaCode (DeepMind)
- LM on math examples:

Stanislas Polu¹ Jesse Michael Han¹ Kunhao Zheng² Mantas Baksys³ Igor Babuschkin¹ Ilya Sutskever¹

Formal Mathematics Statement Curriculum Learning

Jacob Hilto

Christopher Hesse

Mark Che Jerry Tworel John Schulmar

OpenAI

Training Verifiers to Solve Math Word Problems

