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Abstract. We propose a novel discriminative clustering algorithm with a hier-
archical framework for solving unsupervised image segmentation problems. Our
discriminative clustering process can be viewed as an EM algorithm, which al-
ternates between the learning of image visual appearance models and the updates
of cluster labels (i.e., segmentation outputs) for each image segment. In partic-
ular, we advance a simple-to-complex strategy during the above process, which
allows the learning of a series of classifiers with different generalization capabil-
ities from the input image, so that consecutive image segments can be well sepa-
rated. With the proposed hierarchical framework, improved image segmentation
can be achieved even if the shapes of the segments are complex, or the bound-
aries between them are ambiguous. Our work is different from existing region or
contour-based approaches, which typically focus on either separating local image
regions or determining the associated contours. Our experiments verify that we
outperform state-of-the-art approaches on unsupervised image segmentation.

1 Introduction

With the goal of partitioning an image into several spatially coherent regions, im-
age segmentation has been a fundamental computer vision task, which benefits a va-
riety of applications such as object recognition [1,2,3] and video object segmenta-
tion/tracking [4,5,6]. Generally, challenges of image segmentation lie in the diversity
and ambiguity of visual patterns presented in images. Therefore, without any prior
knowledge or user interaction, optimal image partition might not be easily determined
in an unsupervised way.

As suggested in [7,8], one can divide existing unsupervised segmentation algo-
rithms into two categories: region [9,10,11,12,13] and contour-based [14,8,15,16] ap-
proaches. The former considers the input image as a graph, in which each node rep-
resents a pixel or an image segment, while the edges connecting each node pair in-
dicate the associated similarity. Thus, the problem of image segmentation turns into
a clustering task, which can be solved by techniques like normalized cut (NCut) [9].
To better deal with image segments at different scales, more advanced graph represen-
tations have been proposed for improved segmentation (e.g., MNCut [10], correlation
clustering [11], SAS [12], FNCut [13]).

Instead of merging local image regions into segments, contour-based approaches
aim at exploring local image regions for determining the object boundaries [14,8,15,16].
This type of methods design classifiers for identifying image contours using feature
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Fig. 1: Illustration of region and contour-based approaches. (a) Input image, (b) region-based
output by SAS [12], (c) contour-based output by gPb [8], and (d) ours by advancing both region
and contour information with a hierarchical segmentation framework.

cues like color or texture (e.g., gPb [8]), and thus image segments can be estimated ac-
cordingly (e.g., OWT-UCM [8] or Multicut [15]). However, contour-based approaches
might not generalize well if there exist large scale changes for the objects presented
in the input image [8]. In addition, contour detection might fail in determining object
edges for blurry or articulated regions. Therefore, recent approaches like SWA [17,18],
gPb-OWT-UCM [8], or ISCRA [16] advocate an agglomerative clustering (bottom-up)
strategy for alleviating the above problems by performing segmentation from finer to
coarser image scales. However, as pointed out in [16], if one cannot properly update
the contour information during the above hierarchical process (e.g., contour probabil-
ity of gPb-OWT-UCM only determined at the bottom level), the resulting segmentation
performance would still be limited.

As noted in [19,20], successful image segmentation would benefit from feature
cues extracted beyond local regions. For local image regions with sufficient and dis-
tinct feature information, although promising results have been reported by state-of-
the-art methods like gPb-OWT-UCM, human segmentation still achieves much better
performance due to the consideration of information extracted beyond local contours.
As studied in [20], this is because that human tends to consider feature cues from non-
local regions (e.g., those farther away from the detected contours) when performing
segmentation, even he/she does not recognize the object presented in the input image.

Motivated by the above observations, we propose a novel framework for unsuper-
vised hierarchical image segmentation. Our approach utilizes contour detection at dif-
ferent image scales as initialization, and unsupervised image segmentation is achieved
by an EM-like iterative algorithm, which essentially performs discriminative cluster-
ing and maximizes the separation between consecutive image regions. The proposed
hierarchical segmentation process is able to integrate both local and global (non-local)
statistics for improved segmentation. As depicted in Figure 1, improved segmentation
can be expected by our proposed approach.

In our discriminative clustering process, we advocate a simple-to-complex strategy
for learning a series of classifiers with different generalization capabilities at each image
scale. This unique technique allows us to adaptively separate consecutive object regions
by maximizing the differences between the associated feature distributions.
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Fig. 2: Our proposed hierarchical image segmentation framework.

1.1 Our Contributions

– Starting from contour detection, our hierarchical segmentation framework advances
graph-based clustering which exploits and integrates local and non-local feature
cues for unsupervised segmentation.

– The proposed simple-to-complex discriminative clustering strategy allows auto-
matic learning of a series of classifiers, which exhibit different generalization ca-
pabilities for discriminating between image segments, while no additional training
process or data are needed.

2 Our Proposed Method

2.1 Hierarchical Image Segmentation

As illustrated in Figure 2, we advance a hierarchical (i.e., bottom-up) framework for
unsupervised image segmentation, in which we consider the clustering outputs at each
image scale as the input segments for its upper (coarser) level in the hierarchy. For the
interest of computation efficiency, instead of performing pixel-level segmentation at the
starting bottom level l = 1, we over-segment the input image and start the hierarchical
process using superpixels. We apply Turbopixel [21] for performing over-segmentation,
which is able to produce compact superpixels with similar sizes (we fix the number of
superpixels N as 1200 in our work). Since we do not assume the number of clusters
known at each level l, we fix the ratio of the numbers of clusters K in consecutive
scales as r = 1/2, and this hierarchical segmentation process would terminate once the
minimum number of clusters allowed is reached. Our proposed segmentation process
is summarized in Algorithm 1. In the following subsections, we will detail how we
observe multiple feature cues for performing unsupervised segmentation in each level
of our hierarchical framework.

2.2 Discriminative Clustering via EM Optimization

As noted above, we view the segmentation output of a lower level in the hierarchy as
the input of the current level. We now discuss how the segmentation at each level can
be viewed as solving a graph-based optimization task.
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Algorithm 1: Our Proposed Segmentation Framework
Input: Image I, ratio r, maximum iteration number kmax

Output: Segments sl and contour probability P l
contour for each level l in the hierarchy

Over-segmentation step:
Over-segment I and produce superpixels sl1,...,K ,
where level l ← 1, K ← Number of superpixels N

while K > 1 do
Discriminative clustering step:
P l
contour ← Detect contours between sl1,...,K
sl+1
1,...,dK×re← Initially cluster sl1,...,K by NCut

for Iteration k = 1 to kmax do
M-step:

Construct probability models for each cluster m
P k
c (i|m) (1), P k

t (i|m) (3), P k(ps|m) (5)
E-step:
ml

1,...,K ← Classify sl1,...,K by minimizing El in (8)
sl+1
1,...,dK×re←Merge sl1,...,K by ml

1,...,K

Simple-to-complex step:
Updating σ (1), wt,k (4), wk (7) for classifier models in each feature space

K ← dK × re and l ← l + 1

Take level l in the hierarchy for example, we start from determining the probability
P l
Contour for the edges between image segments being object contours, as depicted

in Figure 2. These probabilities are calculated by the differences of texture and color
distributions between consecutive image segments using χ2 and Earth Mover Distances
(EMD) [22,23], respectively. Different from mPb [14,8], we do not consider the use
of any training data for estimating such probabilities. With image segments and the
associated contour probabilities are obtained, we apply NCut [9] for performing graph-
based optimization. This would separate the input segments fromK intoK×r clusters,
which will be viewed as initial segmentation results as shown in Figures 2 and 3.

Since graph-based segmentation techniques like NCut are known to produce clus-
ters (i.e., image segments) with similar sizes [12], complex or ambiguous image regions
might not be properly separated. This is why we advance discriminative clustering in
our proposed framework, aiming at the refinement of the clustering/labeling outputs at
each level in our hierarchy. For the task of unsupervised segmentation, separation be-
tween clusters needs to be automatically achieved by observing the features/classifiers
from consecutive image segments.

For discriminative clustering in our proposed segmentation method, we propose to
learn of a series of classifiers with different generalization capabilities for refined image
segmentation. More precisely, each image cluster (i.e., a set of image segments with the
same label) will be recognized by a particular classifier, which will be automatically
learned from the input image data using multiple types of features. Essentially, our
discriminative clustering strategy can be considered as an EM-like process, which is
summarized as follows:
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Fig. 3: Our discriminative clustering process with a simple-to-complex strategy at level l in the
hierarchy (K is the number of segments).

– M-step: Given the clustering outputs, construct the probability model of each image
cluster in different feature spaces

– E-step: Given the observed cluster models, classify each image segment into the
corresponding cluster based on the estimated probabilities

Although prior works on foreground object segmentation like GrabCut also utilized
similar iterative clustering techniques [24,4,5,6,25], they typically required additional
efforts or information for annotating foreground/background regions (e.g., user interac-
tion or use of temporal features), otherwise the associated classifiers cannot be easily
derived. On the other hand, while EM-based image segmentation has been previously
explored in [26,27,28], such methods still require proper selection of parameters (e.g.,
the number of segments) for performing segmentation.

In our work, we focus on unsupervised image segmentation. At each scale in the hi-
erarchy, our proposed segmentation algorithm is able to discriminate between consecu-
tive segments using classifiers with different generalization capabilities. These classifier
models will first be observed at the M-step of each iteration, and they will be applied
to separate image segments at the following E-step. In Section 2.3, we will detail how
we apply a simple-to-complex strategy for discriminative clustering in our hierarchical
segmentation framework.

2.3 Simple-to-Complex Classification and Segmentation

As depicted in Figure 3, our simple-to-complex strategy for discriminative clustering
first observes simpler classifiers (e.g., kernel density estimation based classifier with
larger σ) at the M-step of each iteration. This results in coarser separation between im-
age segments at the E-step by updating the cluster labels. With this simple-to-complex
strategy, it will be less likely for segmentation outputs to overfit the initial contour
detection results in the beginning of the segmentation process. For the subsequent it-
erations, we treat the newly-predicted segment pairs as updated training data, and we
re-design the classifiers with increased complexities (e.g., smaller σ for Gaussian ker-
nels). Figure 4 illustrates our proposed simple-to-complex strategy. It is clear that, our
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Fig. 4: Illustration of our simple-to-complex strategy for segmentation. Top row (from left to
right): input instances, those with ground truth labels, initial clustering output by NCut, and clus-
tering outputs by Gaussian kernel density estimation (KDE) classifiers with σ = 0.35 and 0.1,
respectively. Bottom row: refined clustering outputs obtained by our simple-to-complex strategy
(i.e., decreasing σ from 0.35 to 0.1). Note that different colors denote the resulting cluster labels.

simple-to-complex strategy effectively performs a coarse-to-fine separation between the
observed features.

We note that, the use of our simple-to-complex discriminative clustering strategy is
to handle objects regions with complex or ambiguous patterns at each image scale. This
is very different from existing work like [29,30], which either chose to discriminate
between image clusters using predetermined SVMs, and only considered global image
statistics for segment discrimination. In our work, the series of classifiers derived by
multiple types of features not only make the separation between complex/ambiguous
object regions more feasible, the resulting outputs (i.e., clustering results) would also
reflect the flexibility of the way human discriminates between different object regions
(which is consistent with the observations [31]). In the following subsections, we dis-
cuss how we automatically learn the classifiers (or image visual appearance models)
with different complexities in each feature space for performing simple-to-complex
classification and segmentation.

Multiple feature cues

Color cues Color information is among the most representative feature cues for image
segmentation. As suggested in [14,8], we use CIE Lab color space for representing each
image segment, and each channel is represented by a histogram of n bins with equal
widths (we set n = 50). Using such features, we apply Naive Bayes classifiers based on
kernel density estimation (KDE) [32,25] for separating consecutive image segments.

At iteration k of discriminative clustering, we derive the probability distribution of
color histograms for each cluster m (i.e., segment label) using Gaussian kernels by:

P k
c (i|m) ∝

n∑
j=1

(
exp
(
− (j − i)2

σ2

)
hc
m(j)

)
, (1)
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where c indicates the color channel of interest, and i is the bin index of the associated
histogram. From (1), we see that hcm(j) returns the pixel number observed in the jth
bin of color channel c, and this number is weighted by a Gaussian kernel with width σ.
Note that we do not use the equality sign for (1), since the derived probability for each
bin will be normalized for ensuring

∑
i

P k
c (i|m) = 1.

As noted in Section 2.2 and depicted in Figure 3, the derivation of (1) can be viewed
as the M-step for modeling the cluster information at each iteration in our discriminative
clustering process. At the E-step, with the equal prior assumption of the clusters (i.e.,
same P (m) for each cluster), we classify each image segment s to cluster m (at the
E-step) by updating the following probability output:

P k
Color(m|s) ∝ P k

Color(s|m)P (m) =

 |s|∏
p=1

3∏
c=1

P k
c (ip|m)

, (2)

where ip denotes the bin which the pixel p (in segment s) belongs to, and |s| represents
the size of segment s. Similar to (1), the calculated probability for each cluster will be
normalized for ensuring

∑
m
P k
Color(m|s) = 1. It is worth noting that, we view each

pixel as an independent observation for fulfilling Naive Bayes assumptions.
Based on our simple-to-complex strategy, we start our KDE-based classification us-

ing larger σ values, which perform coarser separation between image segments and
alleviate potential overfitting problems. As the iteration continues, we reduce σ (which
increases the complexity of KDE) and thus introduce additional classification capabili-
ties based on the separation determined at previous iterations.

Texture cues In addition to color, we consider texture information as feature cues for
segmentation. As did in [33,34], we also apply 17 Gaussian/Laplacian-type filters and
their derivatives in the CIE Lab color space, and we calculate their responses as textural
features. In order to describe and summarize such textural responses in each image
segment, we perform GMM to construct the textons for computing the associated bag-
of-words (BoW) models [35,34].

We note that the number of textons would be a tradeoff between the representation
and generalization capabilities for the resulting BoW models. While a smaller number
of textons produces a simpler/coarser BoW model for describing the texture informa-
tion, a larger one would exhibit a better representation ability (but more possible for
overfitting the texture cues). Therefore, based on our proposed simple-to-complex strat-
egy, we will adjust this parameter during the discriminative clustering process. In our
work, we consider 9 different BoW models with different numbers (2 to 32, according
to an equal logarithm scale) of textons as discussed below.

For the M-stage at iteration k, we estimate the probability distribution of the tth
BoW model (t = 1 to 9) for segmentation cluster m. Based on the law of total proba-
bility, we calculate P k

t (i|m) as follows:

P k
t (i|m) =

∑
p∈m

P k(i|p)P k(p|m), (3)
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where i is the bin (i.e., texton) index of the tth BoW model, P k(p|m) is that of pixel p
presented in cluster m [18], and P k(i|p) calculates the probability of pixel p assigned
to bin i (by GMM).

At the E-step for re-determining the cluster output for each segment, we need to
calculate the probability of assigning each segment s to cluster m (i.e., P k

Text(m|s)).
Similar to the use of color cues, we define P k

Text(m|s) as follows:

P k
Text(m|s) ∝

9∏
t=1

(
Ht∏
i=1

P k
t (i|m)

P (i|s)

)wt,k

(4)

where P (i|s) =
∑
p
P (i|p)P (p|s). Ht indicates the number of textons/bins considered

for the tth BoW model (t = 1 ∼ 9), which ranges from 2 to 32 in a descending order.
It is worth noting that, wt,k in (4) controls the weight for each BoW model, and it

is a function of the iteration number (for simple-to-complex purposes). More specifi-
cally, we determine wt,k = P (s)exp(−β( k

kmax
− 0.5)t), where kmax is the maximum

iteration number allowed (we set β = 0.1), and P (s) =
∑

p P (s|p) is the total number
of pixels belonging to segment s. Similar to (2), the calculated probability of (4) will
be normalized for ensuring

∑
m
P k
Text(m|s) = 1. It can be seen that we impose a larger

weight wt,k on BoW models with fewer number of textons (i.e., simpler models) in the
beginning stages of our discriminative clustering process. As the iteration increases, a
finer separation will be achieved by higherwt,k for the BoW models with larger Ht tex-
ton numbers (i.e., finer models). This is how we apply our simple-to-complex strategy
for performing textural-based clustering process for segmentation.

Locality cues For image segmentation, since the object regions are typically compact
and locally connected, spatial information is often considered as another important
cue [36,4,5]. In our work, we consider Gaussian and shape prior classifiers. The Gaus-
sian classifiers utilize the x and y coordinates of superpixel centers (extracted at the
bottom level in the hierarchy) as features, and thus the observed 2D Gaussian distribu-
tions P k

G(m|s) can be applied to discriminate between image segments s of different
clustersm. On the other hand, inspired by [4], our shape prior classifier aims at deriving
the probability P (ps|m) that a superpixel ps is presented at clusterm in terms of its dis-
tance to the cluster contour. To be more precise, at the kth iteration of our discriminative
clustering process, we derive P k

S (ps|m) at the M-step by:

P k
S (ps|m) ∝ S(d(ps,m)/d̄(m)), (5)

where d(ps,m) measures the shortest distance between superpixel ps to the contour of
cluster m. The sigmoid function S(x) = 1

1+exp(−x) is used to estimate the likelihood of
assigning ps to m, and d̄(m) is the average distance of d.

Assuming the pixels in ps are i.i.d., we estimate the probability of assigning seg-
ment s to cluster m as follows:

P k
Shape(m|s) ∝

∏
ps∈s

(P k
S (ps|m))

|ps|
, (6)
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where |ps| is the size of the superpixel ps. Similar remarks can be applied to the use
of Gaussian classifiers. Thus, at the E-step we update the locality cues by fusing the
results of the two classifiers by:

P k
Local(m|s) = P k

G(m|s)(1−wk)P k
Shape(m|s)wk , (7)

where wk = k/kmax. It can be seen that, as iteration k increases, the weight for the
shape prior classifier becomes larger, allowing one to emphasize on object regions with
complex shape information (i.e., for finer separation). This is again consistent with our
simple-to-complex strategy of the proposed discriminative clustering for segmentation.

Graph-based optimization At the E-step of each iteration in our discriminative clus-
tering process, we apply multi-label Markov Random Fields (MRF) for prediction based
on the observed feature cues. As discussed later in Section 2.4, this graph-based opti-
mization can be viewed as fitting the observed features of superpixels at the bottom
level by the clusters (i.e., image segments) determined at each level in the hierarchy.

In our work, we determine the MRF energy term El(m) at level l as follows:

El(m) = El
D(m) + El

S(m)

El
D(m) = −

∑
s

wC · log(P k
Color(ms|s)) +

wT · log(P k
Text(ms|s)) + wL · log(P k

Local(ms|s))

El
S(m) = λ

∑
s,q

1(ms 6=mq)(−log(P
l
Contour(s, q))), (8)

where m is the labeling vector indicating the segmentation output, and thus its dimen-
sion K is equal to the number of the input segments at that level (i.e., its sth entry ms

indicates the corresponding output for segment s). El
D(m) and El

S(m) are the data and
smoothness terms, respectively. While El

D(m) integrates the probabilities observed in
different feature spaces (with weights wC , wT , and wL), El

S(m) preserves the consis-
tency of segmentation outputs of neighboring segments. Note that q is the neighboring
segments of segment s, and we have ms and mq as cluster labels of segments s and
q, respectively. The function 1() is the indicator function, and P l

Contour(s, q) is the
detected contour probability (see Section 2.2).

At iteration k in level l of the hierarchy, we apply α-β swap [37,38,39] to mini-
mize (8), and update the cluster label m of each segment s accordingly. With the above
MRF model, our discriminative clustering starts segmentation from initial clustering
results produced by locally detected contours, and we update the segmentation results
at each iteration with increasingly complex classifiers in different feature spaces.

2.4 Probabilistic Interpretation

As discussed above, our simple-to-complex discriminative clustering solves a graph-
based optimization problem at each level in the hierarchy, in which each segment is
viewed as an input node to be clustered. By increasing the complexities of the MRF
energy terms, improved optimization can be achieved. Effectively, at level l, this process
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Fig. 5: Optimized energy function outputs of (8) on BSDS300. The vertical axis is the negative
log-likelihood of P l(X) of different approaches, and the horizontal axis indicates the number of
clusters determined at each level in our hierarchy. Note that DC denotes discriminative clustering.

is equivalent to the fitting of features observed from superpixels at the bottom level
using the clusters determined at level l.

For each level l in our hierarchy, minimizing the MRF model in (8) is effectively
solving the maximum likelihood estimation (MLE) of probability P l(X):

P l(X) =

N∏
ps=1

P (xps
)
∏
ps,pq

P l
Contour(ps, pq), (9)

where X represents the observed image features. P (xps
) denotes the estimated prob-

ability of superpixel ps at the bottom level, which is observed across K × r differ-

ent clusters. In other words, we have P (xps) =
K×r∑
y=1

P (mps = y)P (xps |mps = y).

The probability term P (mps = y) indicates how likely ps belongs to cluster y, and
P (xps

|mps
= y) is the probability of observing xps

in that cluster. For image seg-
mentation, since consecutive superpixels are not independent of each other, we have
P l
Contour(ps, pq) denote the contour probability of the associated superpixel pair.

For our discriminative clustering, each E-step can be viewed as estimatingP (mps =
y) by minimizing El in (8), given P (xps |mps = y) observed from the previous M-
step (see the supplementary material for detailed derivations). On the other hand, the
M-step at each iteration updates the observed feature models/classifiers, using outputs
determined at the E-step. Thus, our simple-to-complex clustering process is effectively
solving the above MLE problem. In Figure 5, we show that our discriminative clus-
tering strategy with hierarchical segmentation achieved better and optimized energy
function outputs produced at the final iteration in each level, compared with other sim-
plified/controlled versions of our segmentation framework (see our experiments).

3 Experiments

3.1 Unsupervised Segmentation

We evaluate our proposed method on the Berkeley Segmentation Datasets (BSDS) [31],
MSRC [33], and the Stanford Background Dataset (SBD) [40]. For MSRC, we apply
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Table 1: Performance comparisons of BSDS (* indicates the methods requiring training data).
Note that DC represents discriminative clustering applied in our proposed framework.

BSDS300 BSDS500
Methods SegCover PRI VoI SegCover PRI VoI
MNCut 0.53 0.79 1.84 0.53 0.80 1.89
SWA 0.55 0.80 1.75 - - -
FH 0.58 0.82 1.79 0.57 0.82 1.87
MS 0.58 0.80 1.63 0.58 0.81 1.64
SAS 0.610 0.834 1.534 0.610 0.840 1.552

gPb-OWT-UCM* 0.646 0.852 1.466 0.647 0.856 1.475
ISCRA* 0.66 0.86 1.40 0.66 0.85 1.42

Ours (Full version) 0.660 0.854 1.443 0.655 0.859 1.454

Ours

NCut only (w/o DC) 0.583 0.814 1.734 0.578 0.825 1.784
Complex only 0.627 0.840 1.569 0.618 0.845 1.613

w/o MRF 0.633 0.843 1.536 0.634 0.849 1.548
Color cues only 0.595 0.810 1.695 0.598 0.823 1.724

Color + spatial cues 0.605 0.824 1.653 0.605 0.832 1.699

the ground truth labels provided by [41] for evaluation (as [8,16] did). As for SBD, we
choose the semantic labels (i.e., “regions” given in [40]) of images as ground truth. We
consider three different metrics for evaluating the performance: SegCover [8], PRI [42],
and VoI [43]. Note that larger SegCover/PRI and lower VOI numbers indicate bet-
ter performance. Our code is available at http://mml.citi.sinica.edu.tw/
papers/HDC_code_ACCV_2014/.

For our approach, the parameters for BSDS300 are selected based on the perfor-
mance of the training data of the same dataset. On the other hand, we apply the train-
ing data of BSDS500 to determine the parameters for MSRC, SBD, and BSDS500. For
evaluation, we perform quantitative evaluations based on the optimal image scale (OIS).
That is, the final segment number of interest is determined by the optimal value of each
metric based on the ground truth of each image. In order to produce all possible cluster
numbers (i.e., other than K at level l, K × r at level l + 1, etc.), we merge the seg-
mentation outputs at that level using the associated contour probability values, so that
the intermediate cluster numbers can be obtained. We note that we do not fix the im-
age scale over all images (i.e., optimal dataset scale (ODS)), since unsupervised image
segmentation is typically performed prior to higher-level tasks like object recognition
or retrieval (e.g. [1,2,3]). For such tasks, image priors of class labels or their semantic
information will be provided, which can be viewed as OIS. Later our experiments on
semantic segmentation in Section 3.2 will support this observation.

Tables 1 and 2 summarize and compare the segmentation results, in which we com-
pare our method with MNCut [10], SWA [17], FH [45], MS (mean shift) [46], SAS [12],
gPb-OWT-UCM [8], and ISCRA [16]. From Table 1, it is clear that our approach outper-
formed baseline approaches. Compared with gPb-OWT-UCM and ISCRA, we achieved
comparable or slightly improved results (see examples in Figure 6). As commented
in [8], this is due to the fact that inherent photographic bias in BSDS would make
images contain sufficient local information, which favors contour-based segmentation

http://mml.citi.sinica.edu.tw/papers/HDC_code_ACCV_2014/
http://mml.citi.sinica.edu.tw/papers/HDC_code_ACCV_2014/
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Table 2: Performance comparisons of MSRC and SBD datasets.
MSRC SBD

Methods SegCover PRI VoI SegCover PRI VoI
SAS 0.712 0.823 1.052 0.649 0.856 1.474

gPb-OWT-UCM 0.745 0.850 0.989 0.642 0.858 1.527
ISCRA 0.75 0.85 1.02 0.68* 0.90* 1.50*

Ours 0.772 0.862 0.920 0.681 0.870 1.425

Fig. 6: Example segmentation results of BSDS300. From top to bottom: original images, results
produced by Mobahi et al. [44], SAS [12], gPb-OWT-UCM [8], and ours. Note that the results
for gPb-OWT-UCM, SAS [12] and our method are based on the largest SegCover value, while
those of [44] are based on the highest PRI.

approaches like gPb-OWT-UCM or ISCRA. However, it is worth repeating that gPb-
OWT-UCM and ISCRA applied pre-trained classifiers for contour detection, while ours
is an unsupervised approach and does not require the collection of any training data.
We note that, if the recently proposed object and part metric of Fop [47] is applied, we
achieved a higher score of 0.389 than gPb-OWT-UCM did (0.380). In Table 2, we see
that our method achieved the best performance (for ISCRA, we directly apply the re-
sults presented in [16], which utilized region-based labels (i.e., “layers” given in [40])
for SBD as ground truth, as noted by * in Table 2). Different from the ground truth
of BSDS which separates an object into several regions, image labels for MSRC and
SBD are generally able to identify semantical objects [20]. Since our approach is able
to observe multiple feature cues for discriminating between image regions, improved
performance on these two datasets can be achieved.

In addition, we provide controlled experiments in Table 1, which present the contri-
butions of each component in our proposed framework. For example, NCut only repre-
sents the use of our hierarchical segmentation framework without performing simple-to-
complex discriminative clustering, and complex only indicates that the use of complex
classification models in our proposed method. On the other hand, w/o MRF in Table 1
means the direct use of the predicted probabilities from each feature cue for determining
the segmentation outputs (i.e., no smoothness term is considered in (8)).
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Fig. 7: Performance comparisons (in SegCover) on degraded versions of BSDS.

To verify that our approach is able to consider non-local information and generalizes
well for blurred image contours, we compare the performance our method with those
of gPb-OWT-UCM and SAS on BSDS with degraded resolutions. We downgrade the
resolution of BSDS300 and BSDS500 images using Gaussian filters with different σ,
and we compare the SegCover values in Figure 7. From this figure, we outperformed
SAS (region-based) and gPb-OWT-UCM (contour-based) especially when σ is large.
Thus, the effectiveness of our approach on lower-resolution images can be verified.

3.2 Semantic Segmentation

We now address the task of semantic segmentation using MSRC and SBD datasets. To
be more specific, we evaluate the recognition/annotation accuracy of the output seg-
ments, using classifiers learned from training data (with ground truth object label in-
formation) of the corresponding dataset. We apply the metric of (GTi

⋂
Ri

GTi
⋃

Ri
) for each

semantic class i as recent PASCAL challenges did. Note that GT and R denote the
ground truth and detected segments for class i, respectively. A 5-fold cross-validation
is conducted. For semantic segmentation, we extract color and texture histograms from
ground truth image segments of the training data, and we train classifiers on such image
segments using the associated label information (standard Naive Bayes and linear SVM
are considered). For the test (validation) images of the same data, we perform image
segmentation using our proposed method based on OIS, and we apply the aforemen-
tioned classifiers for predicting the class label of each image segment.

We compare the performance of ours with SAS and gPb-OWT-UCM. Table 3 com-
pares the averaged results of different approaches. From Table 3, we can see that the
average annotation accuracy based on our proposed segmentation method was higher
than those using SAS and gPb-OWT-UCM. Note that the optimal performance (de-
noted as Ground truth in Table 3) was obtained by applying the derived classifiers on
the ground truth labeled segments as shown in the last row of Table 3. As a result, we
see that our method not only outperformed recent segmentation algorithms in terms of
unsupervised segmentation, improved image annotation accuracy also confirms that our
approach is able to achieve better semantic segmentation, which would benefit future
tasks such as object retrieval and classification.
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Table 3: Average recognition results of different methods for semantic segmentation.
MSRC SBD

Methods Naive Bayes SVM Naive Bayes SVM
SAS 0.272 0.330 0.399 0.423

gPb-OWT-UCM 0.285 0.352 0.406 0.426
Ours 0.294 0.362 0.414 0.454

Ground truth 0.366 0.474 0.502 0.570

3.3 Remarks on Computation Costs

Finally, we comment on the computation time and memory requirements of our pro-
posed method. In average, it took 230 seconds for processing an image in BSDS300
with image resolution around 481× 321 pixels. The feature processing part (including
generating superpixel and building textons) took about 78% of the entire computation
time, while our proposed hierarchical segmentation process only required the remaining
22%. Although our method was slightly slower than gPb-OWT-UCM (increased by 5%
of the computation time), our method could be easily accelerated if feature extraction
or preprocessing steps are performed offline. For example, if we build the textons in
advance, our method only took about 60 seconds (only 27% of computation time w.r.t.
gPb-OWT-UCM), while the performance only slightly dropped (e.g., SegCover became
0.64 for BSDS500).

It is worth noting that, we do not need to solve large-scale eigen-analysis problems
as gPb-OWT-UCM does. The memory requirement of our method was about 700MB
for each image, which was only 12% of that required by gPb. Note that ISCRA is
based on gPb-OWT-UCM and applies more sophisticated features. Therefore, so its
memory and computation costs were higher than those of gPb-OWT-UCM. From the
above remarks, it can be concluded that our approach is computationally feasible. Note
that the above runtime and memory estimates were obtained by Matlab on an Intel Quad
Core workstation with 2.2 GHz.

4 Conclusions

This paper presented a hierarchical image segmentation framework, in which an EM-
based discriminative clustering is utilized at each level for discriminating between im-
age segments. By our proposed simple-to-complex strategy, a series of classifiers with
different generalization capabilities can be learned during the clustering process, so
that segmentation of different image segments at each level can be performed automat-
ically. The deployment of our discriminative clustering process in a hierarchical frame-
work allows us to exploit both local and non-local image statistics across image scales
when performing unsupervised segmentation. Experimental results on several bench-
mark datasets confirmed the use of our proposed method for image segmentation, and
our method was shown to achieve competitive or improved results than state-of-the-art
region or contour-based approaches did.
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