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a b s t r a c t

The goal of multiple foreground cosegmentation (MFC) is to extract a finite number of foreground objects

from an input image collection, while only an unknown subset of such objects is presented in each image. In

this paper, we propose a novel unsupervised framework for decomposing MFC into three distinct yet mutually

related tasks: image segmentation, segment matching, and figure/ground (F/G) assignment. By our decom-

position, image segments sharing similar visual appearances will be identified as foreground objects (or their

parts), and these segments will be also separated from background regions. To relate the decomposed out-

puts for discovering high-level object information, we construct foreground object hypotheses, which allows

us to determine the foreground objects in each individual image without any user interaction, the use of pre-

trained classifiers, or the prior knowledge of foreground object numbers. In our experiments, we first evaluate

our proposed decomposition approach on the iCoseg dataset for single foreground cosegmentation. Empirical

results on the FlickrMFC dataset will further verify the effectiveness of our approach for MFC problems.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Aiming at extracting the commonly presented objects, image

osegmentation [1] performs joint segmentation on a set of images

haring overlapping contents. Originally, such cosegmentation is per-

ormed on a pair of input images (e.g., [1–4]), later its extension

o handling a collection of relevant images attracts more attention

rom researchers. While supervised cosegmentation methods uti-

izing user interaction [5] or pre-trained classifiers [6,7] have been

resented, some further proposed to observe visual features for per-

orming cosegmentation in an unsupervised setting (e.g., [8,9]), so

hat the foreground objects can be identified automatically.

Recently, Kim and Xing [10,11] proposed to solve the problem of

ultiple foreground cosegmentation (MFC), which is to identify mul-

iple foreground objects and the background simultaneously during

he cosegmentation process. In MFC, the number of foreground ob-

ects in each image is typically unknown. In addition, the background

resented across images might be different as well. Therefore, MFC is

very challenging task to address.

In this paper, we propose an unsupervised framework for MFC.

s depicted in Fig. 1, we decompose MFC into three distinct com-

uter vision problems: image segmentation, segment matching, and

gure/ground (F/G) assignment. While the first task discriminates
✩ This paper has been recommended for acceptance by M. Pawan Kumar.
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etween image segments, the second task aims at identifying fore-

round segments across images, and the last task is to separate

he foreground segments from background regions. As discussed in

ection 3, our decomposition derives and associates solutions of each

ask in a unified optimization framework. In our experiments, we first

valuate the performance of our method on single foreground object

osegmentation using the iCoseg dataset [5]. The use of the FlickrMFC

ataset [10] further verifies the application of our approach for MFC.

.1. Our contributions

• We propose a novel framework which decomposes MFC into three

well-studied computer vision tasks, i.e., image segmentation, seg-

ment matching, and figure/ground assignment. By properly asso-

ciating and updating the outputs from each task, the goal of MFC

can be achieved.
• With the proposed decomposition framework, background statis-

tics can be observed across images, and thus background regions

can be automatically disregarded. Moreover, the construction of

object hypothesis is able to recover foreground objects containing

multiple segments, while no prior knowledge on the number of

foreground objects is needed.

. Related works

Markov Random Fields (MRF) have been applied for image coseg-

entation, which utilize graph-based optimization for recogniz-

ng the common foreground object from a pair of relevant images

1,3,4]. In [3], a variety of MRF models for cosegmentation have been

iscussed and compared. As noted in [3], dual decomposition
position for multiple foreground cosegmentation, Computer Vision
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Fig. 1. Illustration of our proposed method, which decomposes MFC into the tasks of

segmentation, segment matching, and figure/ground (F/G) assignment.

Table 1

Comparisons of recent cosegmentation methods. The symbol of �\ in-

dicates the task is partially addressed.

Methods Unsupervised F/G assignment MFC

MRF O O X

Batra et al. [5] X O X

Vicente et al. [6] X O X

Rubio et al. [7] O O X

Rubinstein et al. [9] O O X

Faktor and Irani [14] O O X

CoSand [15] O �\ X

Joulin et al. [16] O �\ X

MFC-S [10] X O O

GTC [17] X O O

MFRC [18] X O O

Wang et al. [19] �\ O O

Li et al. [20] O �\ O

MFC-U [10] O �\ O

Ours O O O

Table 2

The list of notations. R() and l() denote the region and label of

interest, respectively.

Notation Explanation

Region Label

R(Ck) Ck The region of the kth

foreground class/part and its label

R(Gi) Gi The background region

in image Ii and its label

R(Fr) Fr The region of the rth

foreground objects and its label

pj
i

l(pj
i
) The jth superpixel

in image Ii and its label

sn
i

l(sn
i
) The nth segment in image Ii and

its label (i.e., the set of connecting

superpixels with the same label)

Om
i

l(Om
i
) The mth foreground object hypothesis

in image Ii and its labels
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tackles the cosegmentation problem by advancing alternative opti-

mization, which solves an EM-like optimization task on the smaller

sub-problems. We note that, however, existing dual-decomposition

based approaches focus on segmenting the single foreground object

from a pair of input images with different backgrounds.

If the foreground objects exhibit significant visual appearance

variations across multiple input images, more advanced matching

techniques will be needed for solving the cosegmentation task (e.g.,

global descriptor matching [12], random forest regressor [6], graph-

based matching [7], and SIFT flow [9]). Since the background re-

gions in the input images are not necessarily distinct, it would be

desirable to separate the foreground objects from such regions dur-

ing cosegmentation. This is known as the figure/ground (F/G) assign-

ment problem, which is typically solved by user interaction [5,13] or

pre-trained classifiers [6,7]. Recent unsupervised cosegmentation ap-

proaches [8,9,14] derived the background models from each individ-

ual image (instead of a set of input images). Therefore, the robustness

of their capability in F/G assignment will be limited.

Nevertheless, most of the above cosegmentation approaches fo-

cused on extracting a single type of foreground objects from in-

put images. For multi-class cosegmentation methods described in

[15,16,20], they did not assign foreground and background labels to

their segmentation outputs even if only two classes were of interest.

Recently, Kim and Xing [10,11] proposed a problem called multi-

ple foreground cosegmentation (MFC), which not only segments mul-

tiple types of foreground objects from the image collection, but F/G

assignment will also be considered. As pointed out in [10], an exhaus-

tive search for proper feature combination for each foreground object

would be computationally prohibitive for MFC. Thus, labeled training

data are required for F/G assignment in MFC (e.g., MFC-S [10], GTC

[17], and MFRC [18]). On the other hand, Wang et al.[19] required

the users to provide the exact number of foreground objects in input

images. In practice, such user interaction or prior knowledge might

not be easy to obtain, especially when the number of input images is

large. While CoSand [15] has been applied for MFC in an unsupervised

way (i.e., MFC-U in [10]), F/G assignment was not considered.
Please cite this article as: H.-S. Chang, Y.-C.F. Wang, Optimizing the decom

and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.06
As highlighted in Table 1, we propose a decomposition framework

or MFC in this paper. Our experiments will verify the effectiveness

f our approach for both single and multiple foreground cosegmenta-

ion. For the ease of understanding, Table 2 summarizes the notations

sed in this paper.

. Decomposing MFC

As illustrated in Fig. 2, we propose to decompose MFC into three

ifferent tasks, which can be associated with each other for identi-

ying foreground object parts and background regions from the in-

ut images I1, . . . , IN . For the jth superpixel p
j
i

in image Ii, we will

etermine whether its label l(p
j
i
) belongs to one of the foreground

lass/part Ck or the background regions. Our decomposition can be

iewed as solving the following optimization problem:

in
∑

i

E(li) s.t.

{
l(pj

i
) = l̂(sn

i
), for pj

i
∈ sn

i

PF(Ck) > T, for l(pj
i
) = Ck,

∀i, j, (1)

here E indicates the energy function for segmentation, and li =
l(p

j
i
)] j=1,...,Np

is the label vector of image Ii with its length equal to

he number of superpixels Np. The jth element l(p
j
i
) in li is the la-

el of superpixel p
j
i

in image Ii. We have sn
i

and l̂(sn
i
) as the nth seg-

ent and its desirable label in image Ii, respectively. Note that the

mage segment determined in this work represents the set of con-

ecting superpixels with the same label, and the image segments

ith similar visual appearances across images will be identified (via

egment matching) and be assigned the same label (see more de-

ails in Section 3.2). The function PF () in (1) denotes the foreground
position for multiple foreground cosegmentation, Computer Vision

.004
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Fig. 2. Our proposed MFC framework, which alternates between three decomposed tasks of segmentation, segment matching and figure/ground (F/G) assignment, followed by an

object discovery stage for identifying multiple foreground objects of interest.

Fig. 3. Segmentation in MFC. First column: examples of input images; second column: superpixels p collected from each image; third column: visualization of the color models

derived for the foreground classes C1, . . . ,CK and background classes GU , Gi , and Gi+1; fourth column: foreground segments s determined by solving the optimization problem of (2).
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robability function with threshold T, which will be discussed later

n Section 3.3.

By optimizing (1), we effectively separate the input images into

ifferent segments, which are either associated with a particular

oreground object class/part or the background regions. We note

hat the objective function of (1) addresses our decomposed task

f image segmentation, and the constraints of l(p
j
i
) = l̂(sn

i
) and

F (Ck) > T correspond to the remaining tasks of segment match-

ng and F/G assignment, respectively. The technique of alterna-

ive optimization is applied for solving the proposed optimization
Please cite this article as: H.-S. Chang, Y.-C.F. Wang, Optimizing the decom

and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.06
roblem of (1). We now detail each decomposed task in the following

ubsections.

.1. Segmentation

As the primary objective function of our decomposition task, the

oal of image segmentation is to assign class labels to each pixel in the

mage collection. For computation efficiency, we apply the technique

f [21] for producing superpixels as input data (instead of pixels), as

hown in Fig. 3. In our work, we fix the number of superpixels of each
position for multiple foreground cosegmentation, Computer Vision

.004
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image as Np = 1200. As a result, we choose to solve the above label

assignment problem in the superpixel level.

Following [9], we apply GrabCut [22] for performing segmenta-

tion. Given each image Ii and its superpixels, we determine the image

segments of this image by minimizing E in (1), which is defined as

E(li) = ED(li) + λES(li), (2)

where ED and ES are the data and smoothness energy terms, respec-

tively. The factor λ in (2) regularizes the smoothness term (a larger

λ prefers larger segments as the segmentation output). As suggested

by Rother et al. [1], we apply the Bag-of-Words (BoW) model in the

CIE Lab color space for describing the image segments. We use GMM

with 32 Gaussian components to determine the color histogram h
p

j
i

for each superpixel p
j
i
. Thus, the data term ED is defined by

ED(li) =
Np∑
j=1

− log (P(l(pj
i
)| pj

i
)), (3)

where P(l(p
j
i
)|p

j
i
) is the probability of assigning superpixel p

j
i

with

class label l(p
j
i
). To calculate the above probability value, we apply

the settings of [2,17] and utilize the normalized χ2 distance to mea-

sure the similarity between h
p

j
i

and h
R(l(p

j
i
))

. Note that R(l(p
j
i
)) rep-

resents image regions with class label l(p
j
i
).

The smoothness term ES is to penalize the cases when the super-

pixels in a homogeneous region are separated into different classes.

As suggested in [22], we define ES as

ES(li) =
∑
pi,qi

1(l(pi)�=l(qi))
( − log (PC(pi, qi))), (4)

where qi denotes the neighboring superpixels of superpixel pi. We

have 1() as the indicator function, and PC(pi, qi) is the contour proba-

bility for separating pi and qi. Note that we drop the superpixel index

j in (4) for simplicity. In our work, PC(pi, qi) is computed in terms of

the distance between color histograms, which is known as probabil-

ity boundary (Pb). However, unlike Pb determined in [23], we do not

require any training data for calculating such probabilities.

As noted earlier, this segmentation task aims at assigning a class

label to each superpixel in the image collection. Let K as the num-

ber of foreground classes/parts of interest, we thus have C1, . . . ,CK as

their class labels. Since we do not assume that the background re-

gions in each image are visually similar, we have background class

labels Gi representing the unique background regions in each image

Ii, and a common background class label GU to be shared by all images

(see Fig. 3 for examples). To prevent possible error propagation dur-

ing our alternative optimization process, representations of Gi and GU

are simply determined by the features observed from boundaries Bi

(of each image Ii) and their union BU = Bi

⋃ · · · ⋃ BN, respectively (see

details in [24,25]). Once this segmentation step is complete, a class la-

bel from {C1, . . . ,CK} or {Gi, GU} would be assigned to each superpixel,

and such outputs can be summarized as R(C) = {R(C1), . . . , R(CK)}, or

R(G) = {R(G1), . . . , R(GN), R(GU)}, respectively.

3.2. Segment matching

Recall that, we define an image segment as the set of connecting

superpixels sharing the same class label. Take the rightmost column

of Fig. 3 for example, the child consists of multiple image segments of

head, arm, and body, while each segment contains superpixels with

the same class/part label.

Unfortunately, the previous segmentation step does not guarantee

that the image segments of the same class label (but across images)

would exhibit similar visual appearances. Similarly, those of different

class labels (in a single or across images) might share similar visual

appearance information. If either of the above cases occurs, one will
Please cite this article as: H.-S. Chang, Y.-C.F. Wang, Optimizing the decom

and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.06
ot be able to successfully identify the foreground objects of interest

rom the image collection. This is the reason why we need to impose

he first constraint in (1), which corresponds to our decomposed task

f segment matching. More precisely, we need to match image seg-

ents with similar visual appearance across images, so that we can

ssign/update their labels accordingly for cosegmentation purposes.

In our work, we apply the settings of [2,4,7] and utilize textu-

al features to describe visual appearances of the image segments.

e consider the use of 17 Gaussian/Laplacian-type filters and their

erivatives in the CIE Lab space [26,27]. We quantize the filter re-

ponses into 32 bins by GMM for deriving their histogram represen-

ations. With such features, we have the class labels for each segment
n
i

in (1) satisfying

(̂sn
i ) = arg min

l(sn
i
)∈{C1,...,CK ,Gi,GU }

χ2(tsn
i
, tR(l(sn

i
))), ∀i, n, (5)

here tsn
i

and tR(l(sn
i
)) are the textural feature of segment sn

i
and that

f the image regions with l(sn
i
), respectively.

Note that the label of each segment l̂(sn
i
) can only be selected

rom {C1, . . . ,CK , Gi, GU}. Since this constraint is enforced across im-

ges, performing (5) is to enforce all superpixels/segments with sim-

lar textural features having the same foreground class label. In other

ords, segment matching is effectively achieved.

.3. F/G assignment

As noted earlier, it is desirable to making distinction between fore-

round and background regions for MFC. Thus, the second constraint

n (1) addresses this F/G assignment issue. In particular, we enforce

he constraint that the probability of each detected foreground class

eeds to be above a predetermined threshold T, i.e., PF (Ck) > T where

k denotes the kth foreground class label (and we set T = 0.2 in this

aper). As suggested in [24,25,28], the use of image boundaries (e.g.,

he dark green and brown frames of images in the second column of

ig. 3) is a good background prior for F/G assignment. Therefore, we

efine our foreground probability function as follows:

F(Ck) = 1

1 + boundary(R(Ck))
, (6)

here R(Ck) denotes the set of superpixels assigned with label Ck.

he function boundary (R(Ck)) calculates the number of pixels in R(Ck)

overing the boundaries of the input images, which is normalized by

he size of R(Ck). It can be seen that if no pixel in R(Ck) locates at any

mage boundaries, we have PF (Ck) = 1. When more pixels in R(Ck)

re at image boundaries, smaller PF (Ck) will be resulted, and thus it

s more likely to have this label set as background instead.

While most existing cosegmentation approaches were not able to

andle the F/G assignment problem, some recently proposed works

hose to apply more complex techniques for solving this task. Ru-

instein et al. [9] utilized RC [29] (i.e., saliency information), while

re-trained F/G classifiers [24] were applied in [6,7] for separating

oreground from background regions. Nevertheless, these methods

erformed F/G assignment on each individual image, not across in-

ut images. As verified later, our F/G assignment based on foreground

robability functions would exhibit improved capabilities in separat-

ng foreground and background regions in the MFC outputs.

.4. Optimizing MFC decomposition

Now we discuss how we solve the proposed decomposition MFC

ramework jointly addressing the three fundamental yet challenging

omputer vision tasks. In fact, even optimizing E in (1) (i.e., perform-

ng image segmentation) without considering the two constraints has

een known as a NP-hard problem [30,31]. As shown in Algorithm 1,

e advance the technique of alternative optimization [3,9,10,16,31],

hich fixes the solutions to two of the three decomposed tasks and
position for multiple foreground cosegmentation, Computer Vision

.004
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Algorithm 1: MFC decomposition.

Input: Images I1, . . . , IN , cluster numbers Kinit and Kmin

Output: Image regions of all classes R(C), R(G)
Initialization:

Collect superpixels from I1, . . . , IN by [21]
R(C) ← GMM clustering of superpixels
with K = Kinit

while K > Kmin do
Segmentation:

Derive color feature models from R(C)
for i = 1 to N do

Labeling vector li ← arg min E(li) (2)

Update R(C) and R(G) by labels l1,...,N

Segment matching:
Derive texture feature models from R(C)
Update R(C) and R(G) by (5)

F/G assignment:
for k = 1 to K do

Remove foreground class Ck if PF(Ck) ≤ T (6)

K ← Number of the foreground classes
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Algorithm 2: Foreground object discovery.

Input: All foreground segments sn
i

in R(C1), . . . , R(CK)
Output: Labels of all foreground segments

Hypothesis construction:
for i ← 1 to N do

for k ← 1 to K do
Find all object hypotheses which contains k
different class labels by (7)

Object discovery:
Extract the textural histogram t of each object
hypotheses and separate them into M clusters by
Mean Shift clustering
tR(F1), . . . , tR(FM) ← Center of each cluster

foreach sn
i

do
Determine the labels of segment sn

i
by (9)

N

c

e

d

i

a

4

o

c

N

e

f

i

f

b

s

c

s

M

t

b

s

o

c

t

w

i

f

O

w

a

f

k

p

l

h

i

fi

olves the remaining one at each iteration. This makes the optimiza-

ion problem of (1) more tractable.

To initialize the alternative optimization process, we over-

egment input images via GMM in the CIELab space with the cluster

umber K = Kinit . Since we do not solve the F/G assignment problem

ntil the iteration starts, each superpixel will be initially assigned a

oreground class label from {C1, . . . ,CK}. For the segmentation step in

ach iteration, we calculate the color feature models (via GMM) for

ach R(Ck), which corresponds to image regions with label Ck. With

uch color models observed, we minimize E in (2) using the technique

f α–β swap [30,32,33], and update the labels of each superpixel ac-

ordingly.

For the segment matching step satisfying the constraint l(p
j
i
) =

(̂sn
i
) in (1), we first collect image segments and their labels deter-

ined by the segmentation step. Next, we apply (5) which makes

oreground image segments with similar textural features having the

ame class label, even if they are across different input images. Finally,

he F/G assignment step takes (1) and removes foreground classes

k if PF (Ck) ≤ T . If no PF (Ck) is below T, we still disregard the one

ith the smallest PF (Ck). This not only guarantees the decrease of

he number of candidate foreground classes until K = Kmin, but also

akes our MFC decomposition insensitive to the selection of T.

It is worth noting that the unsupervised MFC problem is very chal-

enging, since it is NP-hard [10]. As a result, one cannot expect a sim-

le, unified learning or segmentation algorithm for producing satis-

actory MFC results (e.g., [10]). While it is possible to integrate all our

roposed components into a single MRF model for MFC (similar to

he MRF models utilized in [1,3,4]), such models would be very com-

lex and thus be much more computationally expensive. In our work,

ur MFC decomposition framework not only makes the optimization

f (1) more feasible, it also introduces additional flexibility which al-

ows users to replace each decomposed component by other existing

echniques. Later in our experiments, we will confirm both effective-

ess and flexibility of our MFC framework.

. Discovery of multiple foreground objects

With our proposed decomposition framework, the foreground

nd background image regions can be identified from the input im-

ge collection, and the foreground image segments with the same vi-

ual appearances will be further grouped as the same class of interest.
Please cite this article as: H.-S. Chang, Y.-C.F. Wang, Optimizing the decom

and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.06
evertheless, as illustrated in Fig. 4, the image segments (i.e., the de-

omposition outputs) might correspond to object parts instead of the

ntire foreground object. Therefore, the final task of our work is to

iscover the objects of interest across images. As later summarized

n Algorithm 2, we first construct the foreground object hypotheses,

nd the foreground objects will be recovered accordingly.

.1. Construction of foreground object hypotheses

For semantic segmentation like MFC, determining a specific type

f object from a set of image segments (with different foreground

lass labels) is an integer programming (IP) problem [10], which is

P-complete and very difficult to solve even if the object of inter-

st is known in advance. Inspired by [10,24], we propose to construct

oreground object hypotheses to discover the foreground objects of

nterest. This strategy allows us to extract overlapping image regions

or identifying foreground objects, so that the foreground objects can

e automatically discovered from our decomposed outputs.

We now discuss how we construct the foreground object hypothe-

es for MFC. Since the foreground objects in input images typically

onsist of connected segments, we employ the connectivity con-

traint in the proposed object hypotheses as suggested in [10,17].

ore precisely, we consider that each object hypothesis corresponds

o a particular foreground object or a part of it (e.g., an entire or upper

ody of a person). Thus, for each image, a foreground object hypothe-

is will be defined as a set of connected segments, which contains one

r multiple foreground class labels. Given the number of foreground

lass labels K and the segments produced from our MFC decomposi-

ion, we now define Om
i

as the mth object hypothesis of image Ii, and

e have l(Om
i
) indicating the set of foreground class labels contained

n this hypothesis. To be more specific, Om
i

and l(Om
i
) are defined as

ollows:

m
i =

⋃
j

{sm
i ( j)}, l(Om

i ) =
⋃

j

{l(sm
i ( j))}, (7)

here
⋃{sm

i
( j)} represents the connected image segments in im-

ge Ii, and j is the segment index. We note that the number of

oreground class labels is between 1 and K (i.e., |l(Om
i
)| = k and

= 1, . . . , K). Fig. 4 shows an example of our foreground object hy-

otheses, in which |l(Om
i
)| = 3 is considered.

It is worth noting that although the number of foreground class

abels in |l(Om
i
)| = k is between 1 and K, we do not need to ex-

austively search for all possible label combinations when construct-

ng the corresponding object hypotheses. In addition to the identi-

ed background regions identified by the decomposition framework,
position for multiple foreground cosegmentation, Computer Vision
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Fig. 4. Example of object discovery via foreground object hypotheses. (a) Input image Ii , (b) output segments s1
i
, . . . , s6

i
with labels l(s1

i
), . . . , l(s6

i
) of Section 3, (c) example object

hypotheses Om
i

and Om+1
i

with |l(Om
i
)| = |l(Om+1

i
)| = 3, and (d) assigning segments of faces into the cluster which corresponds to the foreground object of baby.
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1 http://www.flickr.com/ .
the use of the aforementioned connectivity constraint further dis-

regards the extracted yet disconnected image segments. Other MFC

approaches like [10] only consider a fixed number of segment com-

binations for identifying the foreground objects, as verified by our

experiments. This would limit their capabilities in identifying the

foreground objects as verified later in our experiments.

4.2. Object discovery via foreground object hypotheses

With all object hypotheses Om
i

with different l(Om
i
) numbers

(from 1 to K) are constructed, the remaining task of object discov-

ery is to identify which particular foreground objects each Om
i

corre-

sponds to. Similar to segment matching in our MFC decomposition,

we represent each object hypothesis Om
i

using its textural histogram

tR(Om
i

) (see textural features determined in Section 3.2). The Mean

Shift algorithm [34] is applied to group the constructed hypotheses

into M different clusters (i.e., foreground objects F1, . . . ,FM). Once

the clustering process is complete, each cluster can be viewed as the

foreground object, while it can be described by the associated cluster

center (i.e., tR(F1), . . . , tR(FM)).

It is worth repeating that while K in our MFC decomposition rep-

resents the number of foreground class/part labels, M in this final

clustering step indicates the number of foreground objects of inter-

est. Take Fig. 4 for example, we have K = 6 foreground classes/parts

extracted during decomposition, and M = 2 objects determined as

the MFC outputs (i.e., apple basket and baby). As depicted in Fig. 4(d),

for overlapping Om
i

(and their superpixels) which appear in multiple

clusters, a simple voting strategy will be applied to decide its final

foreground object label.

When performing the above clustering process for object discov-

ery, we measure the χ2 distance between the textural histogram

of object hypothesis Om
i

and that of foreground object Fr, i.e.,

χ2(tR(Om
i

), tR(Fr)). With the converge and termination of the cluster-

ing process, we then calculate the distance d(sn
i
,Fr) between each

segment sn
i

and foreground object Fr as follows:

d(sn
i ,Fr) =

∑
{Om

i
|sn

i
∈Om

i
}
χ2(tR(Om

i
), tR(Fr)), (8)
Please cite this article as: H.-S. Chang, Y.-C.F. Wang, Optimizing the decom

and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.06
here the distance d(sn
i
,Fr) is calculated by summing up all χ2

istances between foreground object Fr and object hypotheses Om
i

hich contain sn
i

(i.e., {Om
i
|sn

i
∈ Om

i
}). Finally, the label l(sn

i
) of seg-

ent sn
i

is determined by

(sn
i ) = arg min

Fr

d(sn
i ,Fr). (9)

n other words, sn
i

will be assigned to the cluster (i.e., the foreground

bject) which is closest to it.

. Experiments

To evaluate our proposed MFC approach, we conduct experi-

ents on cosegmentation datasets which contain single and mul-

iple foreground objects. The source code can be accessed at

ttp://mml.citi.sinica.edu.tw/papers/MFC_code_CVIU_2015/.

.1. Single foreground cosegmentation

We first conduct cosegmentation experiments on the iCoseg

ataset [5], which contains 643 images collected from Flickr.1 For

ach image, a single type of foreground object is presented, while

here are 38 different objects of interest available. We select λ = 0.4

n (3) and the number of foreground class labels Kinit = 16 for initial-

zation. Due to the presence of only a single foreground object in each

mage, we set K = Kmin = 1 directly taking the decomposition outputs

s cosegmentation results (i.e., no MFC object discovery is required).

We compare our proposed method with recent cosegmentation

pproaches proposed by Vicente et al. [6], Rubio et al. [7], Rubinstein

t al. [9], Wang et al. [35], Dai et al. [36], Joulin et al. [16], and the

ethods of DC [2] and CoSand [15]. Note that training data are re-

uired in [6]. For the completeness of comparisons, we also conduct

xperiments on two different subsets of iCoseg: the subset of 16 fore-

round objects considered in [6], and that of 30 objects in [9]. For our

roposed method, we present the averaged cosegmentation results

f 10 trials, each starts from a random initialization for GMM in the

eginning of our MFC decomposition.
position for multiple foreground cosegmentation, Computer Vision
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Fig. 5. Performance comparisons (in terms of precision) on the subset of the iCoseg dataset considered in [6].
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Fig. 6. Accuracy comparisons in terms of Jaccard similarity (%) on the FlickrMFC dataset.

Table 3

Precision and Jaccard similarity comparisons (%) of the iCoseg Dataset.

Note that the best performance for each task is highlighted in bold.

Methods Entire dataset Subset from [9] Subset from [6]

P J P J P J

[6] – – – – 85.3 62.0

[7] – – – – 83.9 –

[9] – – 89.8 69.3 89.6 67.6

[35] – – – – 90.5 –

[36] 89.5 – – – – –

[2] 80.0 41.5 80.0 43.4 74.8 47.9

[15] – – 70.2 42.6 – –

[16] 70.5 39.5 72.5 43.0 73.0 46.6

Ours 90.0 64.2 89.6 65.6 92.3 65.1
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Table 4

Cosegmentation results of FlickrMFC (%). Note that S, U,

RC, Decom, Iter, OD, Seg, Match represent supervised,

unsupervised, region-contrast saliency detection [29],

MFC decomposition, iterative optimization, object dis-

covery, image segmentation, and segment matching, re-

spectively.

Methods Accuracy ( J)

DC [2] (S) 32.2

CoSand [15](S) 36.7

Li et al. [20] (U) 18

DC-Multiclass [16] (U) 18.9

LDA [37] (U) 25.2

MFC-U [10] (U) 31.2

Ours (U) 44.2

Ours (U) w/ RC 43

Decom w/o OD 40.6

Decom w/o OD and Iter 38.8

Seg + Match 31.8

Seg 27.5

Initialization 24.8
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For quantitative evaluation, we apply two different metrics: pre-

ision P indicating the percentage of correctly labeled pixels, and

he Jaccard similarity J calculating
GT

⋂
R

GT
⋃

R
(note that GT and R rep-

esent the ground truth and segmented foreground object regions,

espectively). Table 3 lists the cosegmentation results of different

pproaches. In addition, Fig. 5 compares the precision of each fore-

round object in the subset of [6]. From the above table and figure,

e see that our method outperformed multiclass cosegmentation ap-

roaches like [15,16]. We achieved comparable results as the state-of-

he-art single foreground approach of [9], which was particularly pro-

osed for cosegmentation of iCoseg. We note that the variance of our

erformance was less than 1.5%, and thus our method is not sensitive

o GMM initialization.

.2. Multiple foreground cosegmentation

To evaluate the MFC performance, we consider the FlickrMFC

ataset [10]. This dataset contains 14 image groups which are also

ampled from Flickr, while each image group consists of 12–20 im-

ges with the number of foreground objects ranging from 3 to 8.

his dataset is very challenging, since it allows distinct backgrounds

resented in the image collection. As noted in prior discussions, this

akes MFC (especially for the F/G assignment task) very difficult to

olve.

In our experiments, we follow the setting of [10] and extend the

accard similarity for evaluating the cosegmentation accuracy, i.e.,

(GTc, R(F)) = max
r=1,...,M

GTc
⋂

R(Fr)
GTc

⋃
R(Fr)

. Note that GTc and R(Fr) indicate the
Please cite this article as: H.-S. Chang, Y.-C.F. Wang, Optimizing the decom

and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.06
egions of each ground truth object category c and those detected

or object j, respectively. For other parameters to be determined, we

ave the initial number of foreground class labels Kinit = 32 (which

s larger than Kinit = 16 for single foreground cosegmentation on

Coseg), and we choose λ = 0.1 in (3) which prefers smaller image

egments in our MFC decomposition.

Fig. 6 compares the cosegmentation performance of different MFC

ethods: DC [2], CoSand [15], Li et al. [20], DC-Multiclass [16], LDA

37], MFC-U [10], and ours. As note that in [10], DC and CoSand are

upervised approaches for solving MFC, while the others and ours

re all performed in an unsupervised setting. It is worth noting that,

mages of cheetah are typically with foreground objects exhibiting

arge visual appearance variances, while those of thinker generally

ontain various types of backgrounds across images. Due to the in-

roduced capability of performing segment matching and F/G assign-

ent across images, we achieved significantly improved MFC results

n these two categories.

Table 4 lists the average accuracy of different methods. It clearly

hows that we achieved about 7.5–19% improvements over others

e.g., we outperformed the unsupervised MFC approach (MFC-U) [10]

y 13.3%). Similar to our experiments on iCoseg, we present our

esults using the average accuracy of 10 trials (each starts from a
position for multiple foreground cosegmentation, Computer Vision
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Fig. 7. Example cosegmentation results of (a) iCoseg and (b) FlickrMFC datasets. For iCoseg, we show pairs of the original images (up) and our cosegmentation outputs (bottom).

For FlickrMFC which contains multiple foreground objects, we show the original inputs, extracted foreground objects, and the associated F/G outputs from top to bottom.
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random initialization for GMM in the beginning of our MFC decom-

position). We also observe that the resulting performance variance

was less than 1.5%.

To investigate the contributions of each component in our pro-

posed framework, we perform additional controlled experiments in

Table 4, which verifies the roles of each proposed component. As

shown this table, the full version of our proposed method achieved

the highest Jaccard similarity of 44.2, while the uses of our frame-

work without object discovery, iteration (i.e., one-pass only), F/G

assignment, etc. stages only produced poorer results. Without han-

dling F/G assignment (e.g., method of Seg + Match), the proposed

method would degenerate into a multi-class cosegmentation al-

gorithm, which resulted in a performance decrease of 7%. It is

obvious that the only use of our initialization step (via GMM cluster-

ing) or the segmentation stage by GrabCut cannot provide satisfac-

tory performance either (denoted as Initialization and Seg in Table 4,

respectively).

We note that the use of RC-based saliency information [29]

for performing F/G assignment on each individual image did not

produce improved results. This verifies the use of our proposed

strategy in Section 3.3 for F/G assignment across all input images.

Nevertheless, Table 4 not only shows that our proposed method out-

performed state-of-the-art cosegmentation approaches, it also sup-

ports our unique decomposition for improved MFC performance.

Example cosegmentation results on both datasets are shown in Fig. 7.

5.3. Remarks on computation time

We now comment on the computation time of our proposed

method. For the iCoset dataset, it took about 10.4 s to cosegment an

image. Processing the image features (including feature extraction,

image over-segmentation, and the calculation of contour probabili-

ties) took about 9.1 s (which is 87.1% of the entire computation time),

while our MFC decomposition only spent the remaining 1.3 s (i.e.,
Please cite this article as: H.-S. Chang, Y.-C.F. Wang, Optimizing the decom

and Image Understanding (2015), http://dx.doi.org/10.1016/j.cviu.2015.06
2.9% of the computation time). Recall that since only single fore-

round cosegmentation is considered for iCoseg, no further object

iscovery stage is required for cosegmentation of this dataset.

As for FlickrMFC, it took an average of 10.7 s for processing an im-

ge. In particular, the additional object discovery stage required about

.3 s which was 3% of the processing time, while those for feature pro-

essing and MFC decomposition were 84% and 13%, respectively. The

bove runtime estimates were obtained by Matlab on an Intel Quad

ore PC with 3.4 GHz with 16 GB memory.

To compare our computation time with those of other coseg-

entation approaches, we applied the code released by [2,16]. Due

o their memory requirements, we performed such comparisons

n iCoseg using a workstation with Intel Quad Core processors of

.4 GHz with 40 GB memory. While the average processing time of

ur method was less than 25 s per image, it required about 3 and

min per image for the approaches of [2] and [16], respectively. From

he above observations, it can be concluded that our proposed MFC

pproach is computationally feasible.

. Limitation and future works

The main challenge of MFC lies in the detection of multiple fore-

round objects from the input images, and the separation between

hem and the remaining backgrounds. While recent research atten-

ion has been focusing on the challenging setting of MFC, most of

he existing works like [10,17–20,37] choose to evaluate their perfor-

ance on natural images (e.g., outdoor images with different objects

resented).

When it comes to perform MFC on images of indoor scenes, de-

raded performance will be expected. To further discuss this issue,

e consider indoor scene images of the RGB-D object dataset [38].

e apply our proposed method and show example results in Fig. 8(a)

nd (b). It can be seen from Fig. 8(a) that while our approach was able

o identify and distinguish between different foreground objects in
position for multiple foreground cosegmentation, Computer Vision
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Fig. 8. Example cosegmentation results of RGB-D object dataset. (a) Successful MFC

outputs and (b) results with missed and falsely detected errors. Note that only a pair of

input images is considered in each, and the results in different colors denote the iden-

tified foreground objects. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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ndoor scenes, we have one missed foreground object and two falsely

dentified foreground regions in Fig. 8(b). This is because that com-

ared to objects in outdoor scenes, objects or background regions in

ndoor scene images are mostly artificial and typically exhibit signif-

cant appearance variations, especially if the images are taken from

ifferent views. As a result, the images of such scenes would contain

egions with distinct color and textural information, which make the

FC problem even more difficult to solve. We believe that if MFC of

ndoor scene image will be of interest, one would require prior and

ufficient knowledge (e.g., types and numbers of the objects of inter-

st, training data, or image context information). Nevertheless, our

ork shows that our proposed method is able to perform favorably

gainst state-of-the-art MFC methods on outdoor scene images in an

nsupervised setting.

. Conclusion

We presented an unsupervised MFC framework, which decom-

oses the original MFC problem into the tasks of segmentation, seg-

ent matching, and F/G assignment. Our proposed framework aims

t solving and alternating between the above three tasks, so that im-

ge segments sharing similar visual appearances will not only be

dentified as foreground object parts, they will also be separated

rom undesirable background regions. Followed by an object discov-

ry stage which utilizes the observed foreground object hypotheses

cross each image, the final objects of interest can be automatically

xtracted from the input image collection. Experiments on iCoseg and

lickrMFC datasets confirmed that our approach performs favorably

gainst state-of-the-art cosegmentation methods on both single and

ultiple foreground cosegmentation problems.
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