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ABSTRACT

It has been a challenging task to estimate optical flow for
videos in which either foreground or background exhibits re-
markable motion information (i.e., large displacement), or
those with insufficient resolution due to artifacts like motion
blur or noise. We present a novel optical flow algorithm,
which approaches the above problem as solving the task of
energy minimization, which exploits image data and smooth-
ness terms at the superpixel level. Our proposed method can
be considered as an extended mean-shift algorithm, which ad-
vances color and gradient information of superpixels across
consecutive frames with smoothness guarantees. Since we do
not require assumptions of linearlization during optimization
(as standard optical flow approaches do), we are able to al-
leviate local minimum problems and thus produce improved
estimation results. Empirical results on the MPI-Sintel video
dataset verify the effectiveness of our proposed method.

Index Terms— large displacement optical flow, super-
pixel, mean shift

1. INTRODUCTION

Optical flow has been widely applied in computer vision ap-
plications such as motion estimation, object segmentation,
and video stabilization. Calculating optical flow across video
frames can be considered as the task of extracting motion pat-
terns between consecutive frames. In practice, videos with
insufficient resolution or those being corrupted due to occlu-
sion, motion blur, etc. noise would cause optical flow estima-
tion error. Moreover, if foreground or background regions ex-
hibit significant motion variations (i.e., large displacement),
how to properly calculate the optical flow across video frames
will be a very challenging task.

Originally proposed by Horn and Schunck [1], optical
flow is calculated by a variational model which solves an op-
timization problem of data and smoothness terms. The data
term typically requires the assumption of linearization for
matching local image brightness or gradients between con-
secutive frames, and the smoothness term aims at preserving
the spatial consistency of the resulting optical flow. However,
if a video exhibits significant motion information, the above
assumption would not be valid and thus the estimation turns
into a nonlinear/non-convex optimization problem.
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Fig. 1. Example of large displacement videos with insufficient res-
olution. (a)-(b) Consecutive frames, (c) color code for visualizing
optical flow, (d) estimation of a standard coarse-to-fine model [3],
(e) our result, and (f) ground truth optical flow.

To address the problem of large displacements during
optical flow estimation, coarse-to-fine warping has been ap-
plied in [2, 3], which downsample the resolution of video
frames for handling optical flow with significant motion.
However, motion of articulated foreground or background
regions with smaller scales would be disregarded after down-
grading the resolution. Others proposed to utilize descriptor
matching (e.g., SIFT) for addressing this problem [4]. To
further improve the accuracy of the above matching scheme,
Large Displacement Optical Flow (LDOF) [5] integrated
both coarse-to-fine warping variational model and descriptor
matching and promising result were reported in [5]. Nev-
ertheless, descriptor matching might not be preferable for
videos without sufficient resolution or with noise presented.

Instead of relying on variational models, superpixel-based
approaches have been recently proposed in [6, 7] for im-
proved estimation. This type of methods assumes the consis-
tency of the optical flow estimated within each image segment
(i.e., superpixel) and thus alleviates the issues of insufficient
video resolution or noise presented. However, methods like
[6, 7] did not consider videos with large displacement, and
thus they cannot produce large displacement optical flow.

In this work, we particularly address optical flow esti-
mation for videos with large motion (foreground or back-
ground) but with insufficient resolution due to motion blur
or noise. As shown in Figure 1, traditional warping-based
methods might not generalize well on such videos. Differ-
ent from a recent work of [8] which addressed such problems
for videos with large displacements by decoupling data and
smoothness terms and performing pixel-level matching, we
advocate the use of image superpixels for jointly optimizing
both data and smoothness terms during optical flow estima-



tion. Since we do not require the assumption of linearization
for our proposed model, the search space of our method is
expanded and thus local minimum problem can be alleviated.
In our experiments, we will verify that our method quanti-
tatively and qualitatively outperforms state-of-the-art optical
flow estimation approaches on such videos.

2. OUR PROPOSED METHOD

2.1. Problem Formulation

Traditional optical flow techniques are typically performed at
the pixel level, and they cannot be easily extended to videos
with large motion but with insufficient resolution. To extend
the search range for the above cases while preserving image
details, we propose to calculate superpixel-based optical flow
from I1 to I2 via

∑
p∈i

I2(xp) − I1(xp − ui), where ui is the

estimated optical flow for the ith superpixel, and xp is the lo-
cation of pixel p. In our work, we utilize color, gradient, and
spatial information of superpixels extracted at I1 for estimat-
ing the optical flow. To be more precise, we define the energy
function to be minimized as follows:
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∑
i
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+
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wS(i,j)E
S
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 , (1)

where NG
i and NS

i indicate the neighborhood sets of ith su-
perpixel (discussed in Sections 2.1.2 and 2.1.3), and j denotes
the index of neighboring superpixels of i. The energy terms
EC , EG, and ES preserve color, gradient and smoothness
consistency, respectively. Parameters wG and wS balance the
gradient and smoothness terms. In our work, we apply Tur-
bopixels proposed by [9] for performing over-segmentation
at each frame. As verified by [10], this allows one to obtain
edge-preserving superpixels with similar sizes.

2.1.1. Color Energy Term

We first discuss the data term ECi in (1) for color consistency,
which is defined as:

ECi (ui) =
∑
p∈BC

i

g(‖xp − (xi + ui)‖2)ρ
(∥∥∥I2 (xp)− µCi ∥∥∥

2

)
,

(2)

where xi is the 2D location of the center of the ith super-
pixel, and ui is the estimated optical flow. We have µCi as a
three-dimensional vector, where each entry indicates the me-
dian value of the color channel R, G, or B for superpixel i at
I1. We have BCi as the set of pixels considered for the ith
superpixel, and I2 (xp) representing the color information of
pixel p within BCi at I2.

In (2), a Gaussian function g relates the spatial informa-
tion between each xp withinBCi and the estimated superpixel
center xi + ui at I2. If a video is with insufficient resolu-
tion, superpixels with larger sizes will be produced (and thus
a larger BCi ), and this allows us to increase the search range
during optical flow estimation.

The second term in (2) advances ρ(x) = −exp (−x/β)
as the penalty function. This function measures the similar-
ity between µCi of I1 and the color information for pixel p in
I2. Its parameter β is calculated as the average difference be-
tween all µCi and those of neighboring superpixels. It can be
seen that, when calculating the color energy term, the Gaus-
sian function g would suppress the color difference for pixels
farther away from the superpixel center. As a result, estima-
tion error due to color inconsistency would be alleviated.

2.1.2. Gradient Energy Term

As noted earlier, we over-segment each video frame by Tur-
bopixels, which produces superpixels with similar sizes while
preserving edge information. To preserve gradient consis-
tency between each superpixel i and its neighbors (with in-
dex j) for calculating the optical flow ui, we determine the
corresponding data energy term EG in (1) as:

EG(i,j) (ui) =∑
p∈BG

(i,j)

g(
∥∥xp − (x(i,j) + ui)

∥∥
2
)ρ
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2

)
.

(3)

In (3), xp is the location of pixel p, and x(i,j) denotes the cen-
ter of the boundary between this superpixel and its neighbors
at I1. Similar to the color energy term defined in (2), µG(i,j)
indicates the median gradient information along this bound-
ary, and ∇I2 (xp) calculates the gradient of I2 at xp. Finally,
BG(i,j) represents the pixel set whose size (in each dimension)
is determined by the length of the associated boundary.

We note that EG has the same form as EC in (2), and the
matching between gradient information via ρ is also weighted
by a spatial Gaussian function g. For each video frame, we
take the average gradient magnitude µG as the parameter β
for the ρ function.

2.1.3. Smoothness Term

Finally, we define the smoothness term ES(i,j)(ui,uj) when
calculating the optical flow ui and uj for the ith superpixel
and its neighbor j as follows:

∑
j∈NS

i

wS(i,j)E
S
(i,j) (ui,uj) =

∑
j∈NS

i

wS(i,j) ‖ui − uj‖22 . (4)

Unlike the gradient term EG which considers the neighbor-
ing superpixels connecting to the ith superpixel as NG

i , NS
i

in (4) now represents a larger neighbor superpixel set and



contains the neighboring superpixels of NG
i . This is to pre-

serve the spatial smoothness consistency when calculating the
superpixel-based optical flow (instead of enforcing the above
consistency in locally neighboring ones).

We note that, when estimating the optical flow using the
method of [11], nonlocal and anisotropic regularization on the
smoothness term has been shown to improve the performance.
By advancing superpixel-based optical flow with quadrati-
cally nonlocal and anisotropic regularization, better estima-
tion results can be expected for noisy or blurred videos with
large displacements, as verified later in Section 3.

2.2. Optimization

We solve the nonlinear and non-convex optimization problem
of (1) for estimating the optical flow at the superpixel level.
Starting from the warping-based optical flow estimation [3]
as initialization, we apply the technique of gradient descend
to solve ui for the ith superpixel:
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where λ is the step size for the optimization. Variables xip =

xp − (xi + uti) and x
(i,j)
p = xp − (x(i,j) + uti) are the distances

between the pixel p and the corresponding estimated su-
perpixel or boundary centers, respectively. Functions ψi

C

p =
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)
, and ψ(i,j)G

p = exp

(
−
∥∥∥∇I2(xp)−µG

(i,j)

∥∥∥
2

βG

)
calculate the associated color and gradient affinity weights,
respectively. Parameters λ′, w′G(i,j) and w′S(i,j) are the weights
associated and proportional to λ,wG(i,j) and wS(i,j).

From (5), it can be seen that we approach the optical flow
estimation problem as solving the task of mean-shift track-
ing [12] at the superpixel level using multiple visual features.
With the introduced smoothness constraint, we alleviate the
problem of unsuccessful matching/tracking across videos due
to insufficient resolution caused by noise or motion blur. In
addition, since our search range (i.e., BCi ) is based on the
size of superpixels and the associated color difference, we al-
leviate local minimum problems (which cannot be easily ad-
dressed using standard mean-shift algorithms).

When applying (5) to update the estimated superpixel-
based optical flow, the data and smoothness terms in (1) are
jointly optimized. As a result, we are able to preserve the
smoothness of the calculated optical flow during the feature
matching process. Moreover, like particle swarm optimiza-
tion [13], this optimization process tends to search for the

global minimum of (1) by passing the matching information
of superpixels which are farther away but with similar color
information. This is another reason why improved estimation
results can be expected.

We note that, our optimization process would terminate
if ui converges or a maximum number of iterations (we set
400 in our experiments) is reached. The estimated superpixel-
based optical flow will be refined by the technique of Classic-
C-brightness (see [14] for details) for reducing the blocking
artifacts due to image over-segmentation.

2.3. Occlusion Handling in Optical Flow Estimation

Typically, videos with large displacement would be accom-
panied with severe occlusion effects, which poses a challeng-
ing task for optical flow estimation. In LDOF [5], consis-
tency check in a backward direction during descriptor match-
ing has been successfully applied to alleviate the above prob-
lem. However, this technique cannot be easily extended to
videos with insufficient resolution. In our work, we perform
forward and backward optical flow estimation to identify op-
tical flow from occluded regions. This is due to the fact that
optical flow estimation for an occluded region would only fail
in one of the directions. As suggested by [15], a probability
function can be calculated by the above results (the probabil-
ity function output would indicate how likely the associated
superpixel is not occluded). Thus, to handle possible occlu-
sion and produce improved estimation results, we multiply
the data terms in (1) by the above probability values before
solving the optimization problem.

3. EXPERIMENTS

To evaluate the performance of our method, we consider a 3D
animation video MPI-Sintel dataset which is recently released
by [17]. Although the videos in this dataset are of size 1024
× 436 pixels per frame, foreground or background regions
in some videos are typically observed to exhibit significant
motion. As a result, effects like low color contrast, large dis-
placement, articulated motion patterns, or motion blur make
the optical flow estimation very difficult. Since the ground
truth optical flow information is available, we are able to
perform qualitative and quantitative comparisons with other
state-of-the-art methods. When evaluating our approach, we
select and fix the parameters like weights for energy terms for
producing the best estimation results for all videos 1.

We select seven video sequences from this dataset: am-
bush 2, ambush 5, ambush 6, cave 2, cave 4, market 5, and
market 6. For videos cave4 and market6, large motion infor-
mation was only observed for small foreground regions. On
the other hand, videos ambush2 and ambush5 exhibit large
displacement motion from background regions with low color
contrast or heavy occlusion. In our experiments, we select the

1Code available at: http://mml.citi.sinica.edu.tw/#tabs project



Table 1. Comparisons of end point error (EPE) for different methods. Note that * indicates the results of LDOF on manually-blurred videos,
and the numbers in bold denote the best results for the corresponding videos.

Method \ Sequence ambush2 ambush5 ambush6 cave2 cave4 market5 market6 Avg
Warping [3] 65.45 42.13 59.62 73.51 24.11 54.24 23.68 48.96
Horn+Schunck [16] 68.95 46.51 58.70 70.36 22.27 48.63 24.11 48.51
Classic+NL-fast [14] 69.02 45.61 57.31 70.21 21.06 51.05 24.48 48.39
LDOF [5] 73.24 49.17 60.71 72.03 29.66 53.80 33.02 53.09
LDOF* [5] 68.95 37.75 56.60 58.06 19.03 43.14 22.74 43.75
Ours 66.80 35.63 45.09 45.63 19.87 33.34 19.34 37.96

I1

I2

LDOF

LDOF*

Ours

GT

ambush 2 ambush 5 ambush 6 cave 2 cave 4 market 5 market 6

Warping

Fig. 2. Example optical flow estimation results for different approaches. Note that GT denotes the ground truth optical flow.

top 20% video frames from each video based on the varia-
tions of the ground truth optical flow (without those in which
the foreground object moves out of the frame). To deal with
low color contrast, motion blur, etc. noise effects, we apply
motion blur kernel in both directions with window sizes as 2%
of the image width, and add salt & pepper noise with density
0.2 for degrading the quality of videos.

We compare our results with those produced by differ-
ent optical flow methods: Warping [3], Horn+Schunck [16],
Classic+NL-fast [14], and LDOF [5]. We do not require the
prior knowledge on the types of noise (like motion blur or
other artifacts) as [18] and [19] did. Since LDOF is based
on descriptor matching, its performance will be sensitive to
descriptor extraction (especially for noisy videos). In order
to provide additional robustness for LDOF, we also perform
LDOF on blurred videos using Gaussian kernels of σ = 10
(denoted as * in Table 1 and Figure 2), which is expected to
outperform the standard LDOF on raw noisy videos.

To quantitatively compare the estimation performance,
Table 1 lists the average values of end point error (EPE),
which indicates the difference (distance) between the ground
truth optical flow and the estimated one. From this table, it
is clear that our approach achieved improved or comparable
performances, while descriptor-matching based methods gen-
erally produced the poorest results. Since we do not require
such matching techniques or the prior knowledge of noisy
type in videos, significant improvements can be obtained es-

pecially for videos with large displacements (i.e., ambush6,
cave2, and market5). This confirmed that our approach is
able to alleviate local minimum problems caused by linear
approximation of traditional optical flow algorithms. As ex-
ample results shown in Figure 2, we see that the estimated
optical flow produced by our method was very similar to the
ground truth, while most image details were well preserved.
From the above experiments, the effectiveness and robustness
of our approach can be successfully verified.

4. CONCLUSION

We presented a superpixel-based optical flow estimation al-
gorithm particularly for videos with large displacement and
insufficient resolution. Our proposed algorithm solves an
energy minimization problem, which jointly optimizes data
and smoothness terms using color and gradient features at the
superpixel level. As an extension of the mean-shift algorithm,
our approach expanded the range for optical flow estimation
and alleviated potential local minimum problems. Experi-
ments on the MPI-Sintel dataset confirmed that our method
quantitatively and qualitatively outperformed coarse-to-fine
warping or descriptor matching based approaches.
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