
Experiments 
 
 
 

Optimization (by Gradient Descend) 

Our Proposed Formulation Motivation 
 Existing large displacement optical flow (LDOF) methods 

rely on coarse to fine warping (e.g. [1]), descriptor (e.g., [2]) 
or patch matching (e.g., [3]). 
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 Dataset: MPI-Sintel[5] (with noise and motion blur) 

 Example iterations and final outputs 

Initialization 
 Segment the input image I1 by Turbopixels[4]. 
 For each superpixel, we consider the averaged standard 

optical flow outputs[1] as initialization of our LDOF process. 

Input video Result from [4] Initialization 
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 At iteration t, the optical flow for the ith superpixel is: 

I2 

Color ( ∂EC(ui) / ∂ui ) 

Gradient  ( ∂EG(ui) / ∂ui ) 

Location of superpixel i of I1  

Smoothness 
( ∂ES(ui,uj) / ∂ui ) 

Data terms:  
Local search by mean shift 

uj (Flow of the jth 
superpixel at iteration t ) 

Smoothness term:  
Pass the information further 
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Color similarity map 
between superpixel i at 
I1 and those at I2 

Gradient similarity map 
between the  edges of 
superpixel i of I1 and 
those of I2 

Take the derivative 
of our formulation 

 Our method can be viewed as the tracking of superpixels by 
mean shift across frames, while local smoothness is preserved. 
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Table 1: Comparisons of end point error (EPE) for different methods. Note that * indicates the results of LDOF on 
manually-blurred videos, and the numbers in bold denote the best results for the corresponding videos. 

 Method \ Sequence ambush2 ambush5 ambush6 cave2 cave4 market5 market6 Avg 
 Warping [1] 65.45 42.13 59.62 73.51 24.11 54.24 23.68 48.96 
Horn+Schunck [6] 68.95 46.51 58.70 70.36 22.27 48.63 24.11 48.51 
Classic+NL-fast [6] 69.02 45.61 57.31 70.21 21.06 51.05 24.48 48.39 
LDOF [2] 73.24 49.17 60.71 72.03 29.66 53.80 33.02 53.09 
LDOF* [2] 68.95 37.75 56.60 58.06 19.03 43.14 22.74 43.75 
 Ours 66.80 35.63 45.09 45.63 19.87 33.34 19.34 37.96 

Paste all superpixels to I2 Color coded output 

 Estimate the motion vector ui for superpixel i at xi by 
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Conclusion 
  We propose a novel LDOF method in which we 

• Do not linearize the data term. 
• Do not smooth the smaller object away by coarse to fine warping. 

• Do not perform global matching without considering smoothness 
term or decouple the data and smoothness term. 

 
 

• Patch matching lacks the ability of preserving local smoothness. 

 

 We propose superpixel-based matching for LDOF with 
improved performance. 
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• Descriptor matching might not be preferable if: 

• Coarse to fine warping can not find large motion on 
small scale object  

I1 

I2 Result of [1] 

Smaller scale object become 
invisible when estimating large 
motion 
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difference between i and I2 near xi+ui 
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difference between i and j 


	投影片編號 1

