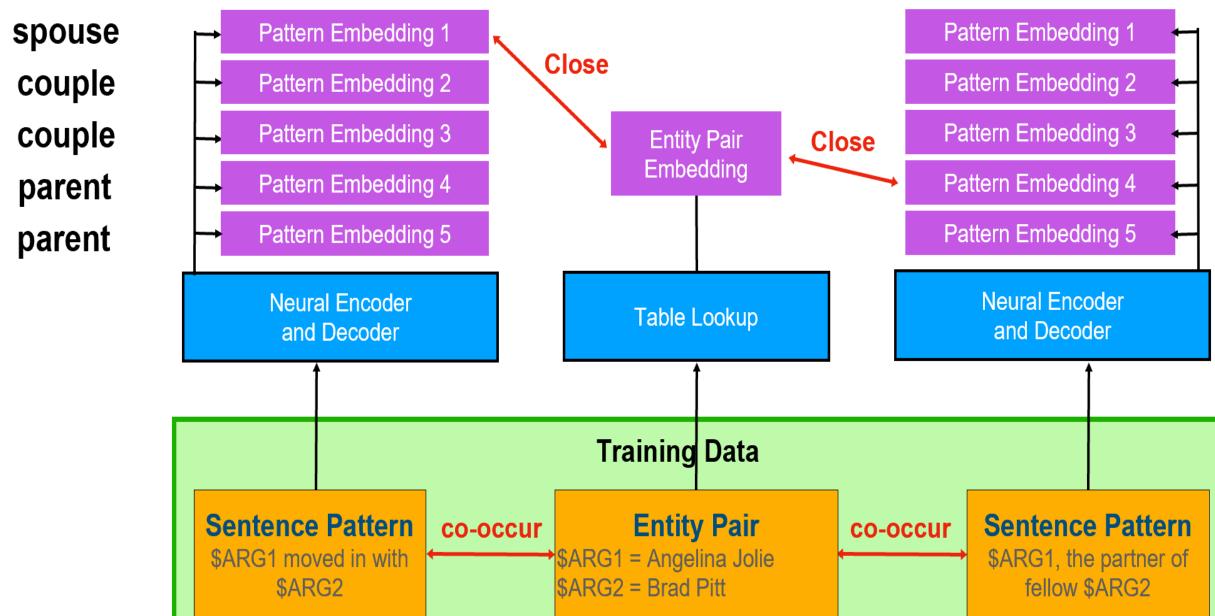

Introduction

Previous work in Distant Supervised Relation Extraction:

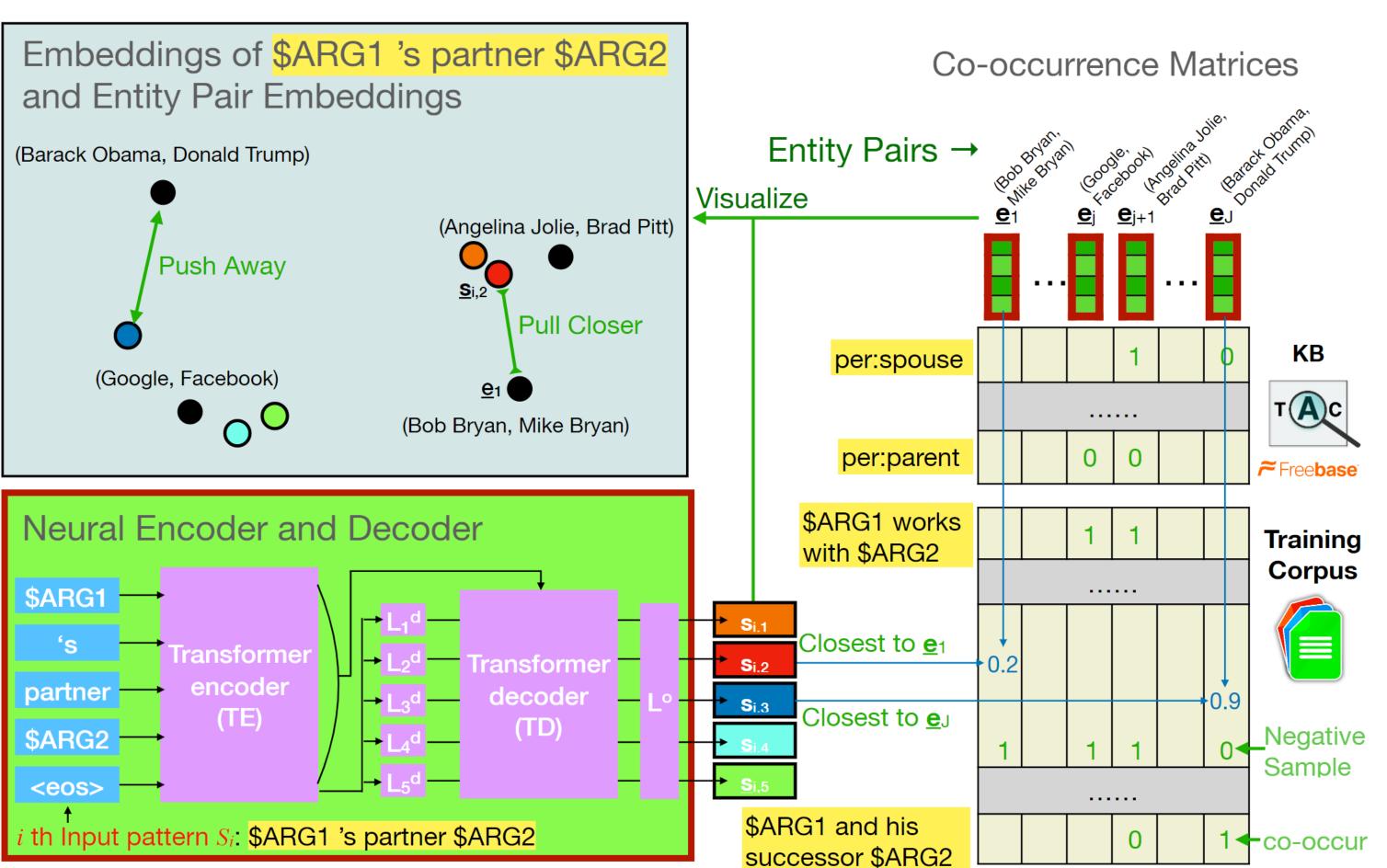
- Training signal Co-occurrence of entity pairs with sentence patterns
- Universal Schema assumes one embedding per sentence pattern
- Compositional Universal Schema uses LSTM to encode sentence pattern


Limitations:

- A sentence pattern could co-occur with different facets (i.e., entity pairs with different relation)
- All facets compressed into a single embedding for each sentence pattern

Main Idea – Multifacet Embeddings

- Represent each pattern using multiple embeddings
- Each embedding represents a facet
- One facet can be represented by multiple embeddings
- A facet of a pattern is similar to a facet of another pattern if the patterns share same entity pairs



Multifacet Relation Extraction

Rohan Paul*, Haw-Shiuan Chang*, Andrew McCallum

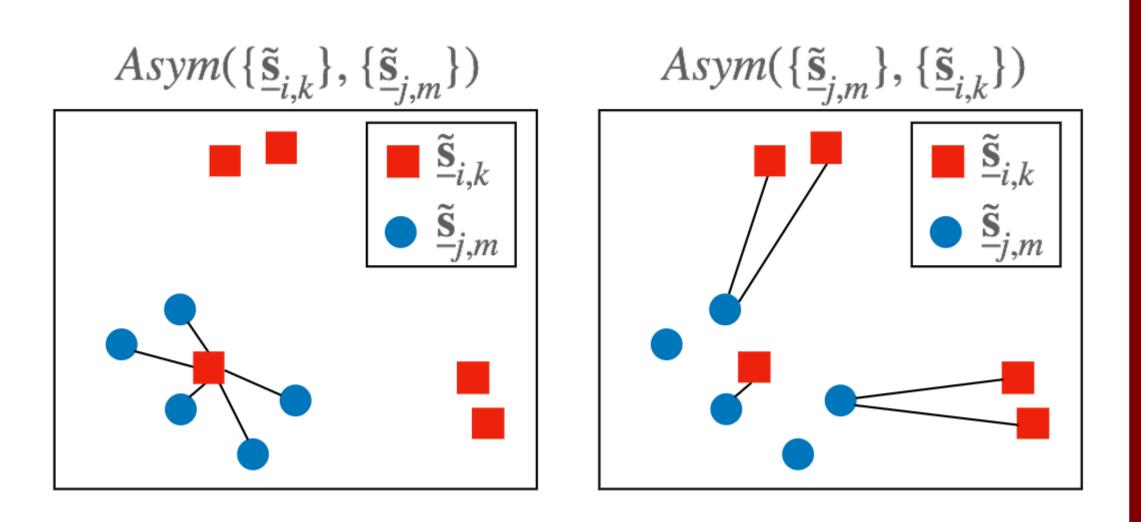
lding ←		
oder		
Pattern	co-occur	Entity Pair
e partner	← →	who are co-
\$ARG2		workers
ise?		

co-worker co-worker friend spouse spouse

Seq2Seq Model

- embeddings

Objective function


- Choose closest facet for each entity pair
- Minimize the distance of the co-occurred entity pair and sentence pattern
- Maximize all the other distances
- Similar to kmeans clustering, encouraging pattern embeddings to become the centers of entity pairs that co-occur with the pattern

Scoring functions

- $\{\tilde{\mathbf{s}}_{i,m}\}$ to its closest center in $\{\tilde{\mathbf{s}}_{i,k}\}$

Specific Pattern: "\$ARG1, the wife of fellow \$ARG2"

General Pattern: "\$ARG1, the wife of \$ARG2"

Our Method

• Transformer encoder to encode sentence into a single embedding Transformer decoder to decode encoded embedding into multiple facet

• $Asym(\{\tilde{\mathbf{s}}_{i,k}\}, \{\tilde{\mathbf{s}}_{i,m}\})$ computes the average of cosine similarities from every center in

• Checking if $\{\underline{\tilde{s}}_{i,k}\}$ is more specific than $\{\underline{\tilde{s}}_{i,m}\}$: $Asym(\{\underline{\tilde{s}}_{i,k}\}, \{\underline{\tilde{s}}_{i,m}\}) > Asym(\{\underline{\tilde{s}}_{i,m}\}, \{\underline{\tilde{s}}_{i,k}\})$? • Similarity between $\{\tilde{\underline{s}}_{i,k}\}$ and $\{\tilde{\underline{s}}_{i,m}\}$: $(Asym(\{\tilde{\underline{s}}_{i,k}\}, \{\tilde{\underline{s}}_{i,m}\}) + Asym(\{\tilde{\underline{s}}_{i,m}\}, \{\tilde{\underline{s}}_{i,k}\}))/2$

Distant supervised relation extraction

Method	TAC 2012 (Validation)		TAC 2013			TAC 2014			
Wiethou	Prec	Prec Recall		Prec	Recall F1		Prec	Recall	F 1
USchema*	34.8	23.7	28.2	42.6	29.4	34.8	35.5	24.3	28.8
CUSchema (LSTM)*	27.0	32.7	29.6	39.6	32.2	35.5	32.9	27.3	29.8
Ours (Single-LSTM)	25.7	21.7	23.5	30.4	26.3	28.2	22.1	20.5	21.3
Ours (Single-Trans)	26.1	21.6	23.7	29.5	25.2	27.2	19.0	21.2	20.0
Ours (LSTM)	32.0	28.9	30.3	41.3	33.9	37.2	34.1	29.5	31.6
Ours (Trans)	33.6	27.7	30.4	42.5	33.2	37.3	34.6	28.5	31.3
USchema + CUSchema (LSTM)*	29.3	32.8	30.9	41.9	34.4	37.7	29.3	34.1	31.5
USchema + Ours (LSTM)	29.2	33.7	31.3	38.1	38.9	38.5	31.5	34.4	32.9
USchema + Ours (Trans)	30.4	33.9	32.1	39.0	38.8	38.9	32.0	34.0	33.0

Premise (Specific Pattern) \$ARG1, the president of the \$ARG \$ARG1 's chairman, \$ARG2 \$ARG1 's father, \$ARG2 \$ARG1 worked with \$ARG2 \$ARG1 had with \$ARG2 \$ARG1 said the \$ARG2

AAAI.

Experiments

Setting is the same as CUSchema (Verga et al., 2016)

Training data: text with linked entities + Freebase + a few rules (No label data) Validation data: TAC slot filling 2012

Testing data: TAC slot filling 2013 2014

Unsupervised entailment detection

Dataset: Sentence pattern pairs where the words in premise and hypothesis are hypernymy; e.g., president -> leader

Collect labels of 1,500 sentence pattern pairs

Retrieve entailment out of other relations (including paraphrase)

Predict the entailment direction of patterns

	Hypothesis (General Pattern)	Label		Classification	Direction Detection		
G2	\$ARG1, the leader of the \$ARG2		Method	AP@all	Micro Acc	Macro Acc	
02	\$ARG1 's leader , \$ARG2	Entailment	Random	21.9	50.0	50.0	
			Freq Diff	21.9	50.0 54.5	47.3	
	\$ARG1 's leader, \$ARG2	Other	1				
	\$ARG1 deal with \$ARG2	Entailment	CUSchema	31.2	50.0	50.0	
	\$ARG1 deal with \$ARG2	Other	Ours (Single)	23.6	50.0	50.0	
	\$ARG1 say the \$ARG2	Paraphrase	Ours	37.8	63.1	55.4	

Conclusion

We propose a novel method to improve the compositional universal schema, CUSchema, by modeling different facets of a sentence pattern Representing every sentence pattern using the cluster centers, we can achieve better symmetric and asymmetric similarity measurement between sentence patterns for relation extraction and entailment detection

References

[1] Riedel, S., Yao, L., McCallum, A., & Marlin, B. (2013). Relation extraction with matrix factorization and universal schemas. In NAACL.

[2] Verga, P., Belanger, D., Strubell, E., Roth, B., & McCallum, A. (2016).

Multilingual relation extraction using compositional universal schema. In NAACL. [3] Chang, H-S, Yuan, J., Iyyer, M., & McCallum, A. (2021). Changing the Mind of Transformers for Topically-Controllable Language Generation. In EACL.

[4] Chang, H-S, Agrawal A. & McCallum, A. (2021). Extending Multi-Sense Word Embedding to Phrases and Sentences for Unsupervised Semantic Applications/ In