

- - What clustering loss to use?

Extending Multi-sense Word Embedding to Phrases and Sentences for Unsupervised Semantic Applications

Haw-Shiuan Chang, Amol Agrawal, Andrew McCallum

- Multiple embeddings for sentence representation is much better than single embedding
- Word importance estimation using the co-occurring distribution improves various scoring functions
- More facets are better in summarization

Visualizing Predicted Cluster Centers

Input Phrase : civil order <eos></eos>
Output Embedding (K = 1):
e1 — government 0.817 civil 0.762 citizens 0.748
Output Embeddings (K = 3):
e1 — initiatives 0.736 organizations 0.725 efforts 0.725
e2 — army 0.815 troops 0.804 soldiers 0.786
e3 — court 0.758 federal 0.757 judicial 0.736
Input Sentence: SMS messages are used in some countries as re-
minders of hospital appointments . <eos></eos>
Output Embedding $(K = 1)$:
e1 - information 0.702, use 0.701, specific 0.700
Output Embeddings $(K = 3)$:
e1 — can 0.769, possible 0.767, specific 0.767
e2 — hospital 0.857, medical 0.780, hospitals 0.739
e3 — SMS 0.791, Mobile 0.635, Messaging 0.631
Output Embeddings ($K = 10$):
e1 - can 0.854, should 0.834, either 0.821
$e_2 - hospital 0.886$, medical 0.771, hospitals 0.745
$e_3 - services 0.768$, service 0.749, web 0.722
e4 — SMS 0.891, sms 0.745, messaging 0.686
e5 - messages 0.891, message 0.801, emails 0.679
e6 — systems 0.728, technologies 0.725, integrated 0.723
e7 — appointments 0.791, appointment 0.735, duties 0.613
e8 - confirmation 0.590, request 0.568, receipt 0.563
e9 - countries 0.855, nations 0.737, Europe 0.732
e10 — Implementation 0.613, Application 0.610, Programs 0.603
Unsupervised Phrase Similarity

Metho	Method SemEval 2013		al 2013	Turney (5)	Turney (10)	
Model	Score	AUC	F1	Accuracy	Accuracy	
BERT	CLS	54.7	66.7	29.2	15.5	
	Avg	66.5	67.1	43.4	24.3	
GloVe	Avg	79.5	73.7	25.9	12.9	
FCT LM†	Emb	-	67.2	42.6	27.6	
Ours	SC	80.3	72.8	45.6	28.8	
(K=10)	Emb	85.6	77.1	49.4	31.8	
Ours	SC	81.1	72.7	45.3	28.4	
(K=1)	Emb	87.8	78.6	50.3	32.5	
-						

- beside a sentence or a phrase.

Experiments

similar for phrase representation

Unsupervised Sentence Similarity

co-occurri words

the inpu

A man is lifting weight

Method		Dev		Test	
Score	Model	All	Low	All	Low
Cosine	Skip-thought	43.2	28.1	30.4	21.2
CLS	BEDT	9.6	-0.4	4.1	0.2
Avg	DEKI	62.3	42.1	51.2	39.1
SC	Our c K1	55.7	43.7	47.6	45.4
	Our c K10	63.0	51.8	52.6	47.8
WMD	GloVe	58.8	35.3	40.9	25.4
	Our a K1	63.1	43.3	47.5	34.8
	Our a K10	66.7	47.4	52.6	39.8
Prob_WMD	GloVe	75.1	59.6	63.1	52.5
	Our a K1	74.4	60.8	62.9	54.4
	Our a K10	76.2	62.6	66.1	58.1
Avg	GloVe	51.7	32.8	36.6	30.9
	Our a K1	54.5	40.2	44.1	40.6
	Our a K10	61.7	47.1	50.0	46.5
Prob_avg	GloVe	70.7	56.6	59.2	54.8
	Our a K1	68.5	56.0	58.1	55.2
	Our a K10	72.0	60.5	61.4	59.3
SIF†	GloVe	75.1	65.7	63.2	58.1
	Our a K1	72.5	64.0	61.7	58.5
	Our a K10	75.2	67.6	64.6	62.2
	Our a (k-means) K10	71.5	62.3	61.5	57.2
sentence-BERT (100 pairs)*		71.2	55.5	64.5	58.2

Unsupervised Extractive Summarization

Setting	Method	R-1	R-2	Len
	Random	28.1	8.0	68.7
-	Textgraph (tfidf)†	33.2	11.8	-
	Textgraph (BERT)†	30.8	9.6	-
Unsup,	W Emb (GloVe)	26.6	8.8	37.0
No	Sent Emb (GloVe)	32.6	10.7	78.2
Sent	W Emb (BERT)	31.3	11.2	45.0
Order	Sent Emb (BERT)	32.3	10.6	91.2
-	Our c (K=3)	32.2	10.1	75.4
	Our c (K=10)	34.0	11.6	81.3
	Our c (K=100)	35.0	12.8	92.9
Unsup	Lead-3	40.3	17.6	87.0
	PACSUM (BERT)†	40.7	17.8	-
Sup	RL*	41.7	19.5	-

Conclusion

We propose a framework for learning the cooccurring distribution of the words

Even though there are usually only a few words that co-occur with each sentence, we demonstrate that the proposed models can learn to predict interpretable cluster centers conditioned on an (unseen) sentence.

References

[1] Neelakantan, A., Shankar, J., Passos, A., & McCallum, A. (2014). Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space. In *EMNLP*.

[2] Chang, H-S, Yuan, J., Iyyer, M., & McCallum, A. (2021). Changing the Mind of Transformers for Topically-Controllable Language Generation. In EACL.

[3] Paul, R*., Chang, H-S*, & McCallum, A. (2021). Multi-facet Universal Schema. In EACL.