Distributional Inclusion Vector Embedding for Unsupervised Hypernym Detection

JMASS

Haw-Shiuan Chang, ZiYun Wang, Luke Vilnis, Andrew McCallum

reaction, oxidation, nyorogen, reduction				
Emb. Value	Sentence			
0.8589	reaction 6 followed oxidation generate $co2$ via reaction 7 tafel plots			
0.8588	oxidation reaction mor coupled reaction <u>co2</u> reduction accompanies formation co intermediates			
0.8494	reaction pathway rather complete oxidation <u>co2</u> incomplete ethanol oxidation however highly			
0.8463	species reaction 3 finally oxidize $\underline{co2}$ reaction 8 scheme reaction mechanism			
0.8449	oxidation acetic acid complete oxidation <u>co2</u> conclude rate limiting reaction steps			
0.8381	activation energy complete oxidation ethanol <u>co2</u> compared overall oxidation reaction mainly			
0.8361	apparent activation energies ethanol oxidation <a href="https://color.pdf/color.col/col/col/col/col/col/col/col/col/col/</td>			
0.8349	complete oxidation reaction $c+o2 = co2$ gibbs energy difference reaction divided			

Dataset	BLESS	EVALution	LenciBenotto	Weeds	Medical	LEDS
Random	5.3	26.6	41.2	51.4	8.5	50.5
Word2Vec + C	9.2	25.4	40.8	51.6	11.2	71.8
GE + C	10.5	26.7	43.3	52.0	14.9	69.7
GE + KL	7.6	29.6	45.1	51.3	15.7	64.6 (80 ³)
DIVE + $C \cdot \Delta S$	16.3	33.0	50.4	65.5	19.2	83.5
Dataset	TM14	Kotlerman 2010	HypeNet	WordNet	Avg (10 datasets)	HyperLex
Dataset Random	TM14 52.0	Kotlerman 2010 30.8	HypeNet 24.5	WordNet 55.2	Avg (10 datasets) 23.2	HyperLex 0
Dataset Random Word2Vec + C	TM14 52.0 52.1	Kotlerman 2010 30.8 39.5	HypeNet 24.5 20.7	WordNet 55.2 63.0	Avg (10 datasets) 23.2 25.3	HyperLex 0 16.3
Dataset Random Word2Vec + C GE + C	TM14 52.0 52.1 53.9	Kotlerman 2010 30.8 39.5 36.0	HypeNet 24.5 20.7 21.6	WordNet 55.2 63.0 58.2	Avg (10 datasets) 23.2 25.3 26.1	HyperLex 0 16.3 16.4
Dataset Random Word2Vec + C GE + C GE + KL	TM14 52.0 52.1 53.9 52.0	Kotlerman 2010 30.8 39.5 36.0 39.4	HypeNet 24.5 20.7 21.6 23.7	WordNet 55.2 63.0 58.2 54.4	Avg (10 datasets) 23.2 25.3 26.1 25.9	HyperLex 0 16.3 16.4 9.6 (20.6 ³)

Distributional Inclusion

AP@all (%)					
	Freq				
SDOM	PPMI				
200W	PPMI w/ IS				
	All wiki				
	Full				
DIVE	w/o PMI				
	w/o IS				
Kmean (Freq NMF)					

find, specie, species, animal, bird head, leg, long, foot, hand industry, export, industrial, economy, company 🕇 goddess, zeus, god, hero, sauron [.] cause, disease, effect, infection, increase food, fruit, vegetable, meat, potato [.] research, study, scientific, science, theory · stem, blood, vessel, artery, intestine may, cell, protein, gene, receptor · ndividual, ability, need, rather, consider emale, age, woman, male, household 🚽 💳 family, name, mother, bear, father sea. lake. river. area. water patient, symptom, treatment, disorder, mav 🗕 political, support, policy, issue, concern 💳 make, although, even, though, much 📒 science, philosophy, theory, philosopher, term 📒 bc, source, greek, ancient, date 💻

• We propose an interpretable and efficient word embedding, DIVE • DIVE compresses SBOW while preserving the inclusion property • DIVE achieves new state-of-the-art unsupervised performance on most of hypernym detection datasets

for hypernymy detection. In EACL.

Experiments

• Trained on the first ~50 million words of wikipedia • Test on 10 datasets using AP@all (AUC) and HyperLex using p

Generality

Micro Average (10 datasets) Average # dimensions CDE AL_1 ΔS W· ΔS C· ΔS **28.2** 31.5 31.2 31.6 31.1 SBOW Freq 5799 32.9 30.1 23.0 31.1 33.5 32.1 31.8 31.5 24.1 30.3 SBOW PPMI 3808 29.0 29.2 30.2 23.1 31.1 27.6 25.3 32.1 34.1 32.7 DIVE 20 28.5 33.4 26.7 31.5 30.1 ≫w/o PMI>k 22.3 20.7 19.1 19.6 19.9 29.1 24.7 31.5 31.8 31.5 w/o *Z/#(w) (non-negative word2vec)

Similarity * Generality

Conclusion

References

[1] V. Shwartz, E. Santus, and D. Schlechtweg. 2017. Hypernyms under siege: Linguistically-motivated artillery

[2] I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun. 2016. Order-embeddings of images and language. In ICLR. [3] L. Vilnis and A. McCallum. 2015. Word representations via gaussian embedding. In ICLR.

[4] O. Levy and Y. Goldberg. 2014. Neural word embedding as implicit matrix factorization. In NIPS.

[5] H.-S. Chang, A. Agrawal, A. Ganesh, A. Desai, V. Mathur, A. Hough, A. McCallum. 2018. Efficient Graph-based Word Sense Induction by Distributional Inclusion Vector Embeddings, In TextGraphs