Efficient Graph-based Word Sense Induction by Distributional Inclusion Vector Embeddings

<u>Haw-Shiuan Chang</u>¹, Amol Agrawal¹, Ananya Ganesh¹, Anirudha Desai¹, Vinayak Mathur¹, Alfred Hough², Andrew McCallum¹

¹UMass Amherst, ²Lexalytics

Word Sense Disambiguation

Word Sense Induction (WSI)

Related Work - 1: Clustering Mentions

Related Work - 2: Clustering Related Words

Lin et al., 1998; Pantel and Lin, 2002; Dorow and Widdows, 2003; Veronis, 2004; Agirre et al., 2006; Biemann, 2006; Navigli and Crisafulli, 2010; Lau et al.; 2012; Hope and Keller, 2013; Di Marco and Navigli, 2013; Mitra et al., 2014; Pelevina et al., 2016

Main Idea: Group Topics

Motivations

More efficient, and different senses usually appear in different topics

Issues

Similarity between topics depends on the target word

Challenge: Similarity Changes

Challenge: Similarity Changes

Motivations

More efficient, and different senses usually appear in different topics

Issues

Similarity between topics depends on the target word

Our Solution: Focus on Relevant Words

Topic similarity measurement based only on words both
1) from relevant topics 2) representative in topics

Our Solution: Focus on Relevant Words

Topic similarity measurement based only on words both
1) from relevant topics 2) representative in topics

Distributional Inclusion Vector Embedding (DIVE)

DIVE also achieves state-of-the-art performances in unsupervised hypernym detection [1]

[1] Haw-Shiuan Chang, ZiYun Wang, Luke Vilnis, and Andrew McCallum. 2018. Distributional inclusion vector embedding for unsupervised hypernymy detection. In HLT/NAACL.

Distributional Inclusion Vector Embedding (DIVE)

	w _q [b _j] of core	bj	Top 1-5 words
Output: embedding of each		1	element, gas, atom, rock, carbon
word (e.g. core)	1	2	star, orbit, sun, orbital, planet
Input: Plaintext corpus		3	electron, current, electric, circuit, voltage
		4	tank, cylinder, wheel, engine, steel
	⊐_∕	5	high, low, temperature, energy, speed
these cold dense c	ore	6	acid, carbon, product, use, zinc
formation		7	system, architecture, develop, base, language
		8	version, game, release, original, file
		9	network, user, server, datum, protocol
standard product bui		10	access, need, require, allow, program
around a CPU core		11	also, well, several, early, see
		12	part, almost, see, addition, except
the innovation of t	the	13	several, main, province, include, consist
common core , a		14	science, philosophy, theory, philosopher, term
educational strategy		15	school, university, student, education, college

Similarity Estimation

Graph-based Clustering

• For simplicity, we use spectral clustering

Some Examples

Query	CID	Top 5 words in the top dimensions			
roals	1	element, gas, atom, rock, carbon	sea, lake, river, area, water		
	1	find, specie, species, animal, bird	point, side, line, front, circle		
TOCK	2	band, song, album, music, rock	write, john, guitar, band, author		
	2	early, work, century, late, begin	include, several, show, television, film		
1	1	county, area, city, town, west	several, main, province, include, consist		
bank	1	building, build, house, palace, site	sea, lake, river, area, water		
Ualik	2	money, tax, price, pay, income	company, corporation, system, agency, service		
	2	united, states, country, world, europe	state, palestinian, israel, right, palestine		
1	1	food, fruit, vegetable, meat, potato	goddess, zeus, god, hero, sauron		
apple	1	war, german, ii, germany, world	write, john, guitar, band, author		
apple	2	version, game, release, original, file	car, company, sell, manufacturer, model		
2	2	system, architecture, develop, base, language	include, several, show, television, film		
star	1	film, role, production, play, stage	character, series, game, novel, fantasy		
		wear, blue, color, instrument, red	write, john, guitar, band, author		
	2	element, gas, atom, rock, carbon	star, orbit, sun, orbital, planet		
	2	give, term, vector, mass, momentum	light, image, lens, telescope, camera		

Topic Clustering to Sense Embedding

 Any word embedding could be used, we use Word2Vec in experiments

[2] Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCallum. 2014. Efficient nonparametric estimation of multiple embeddings per word in vector space. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP

Evaluation

Experiments

- Train on Wikipedia
- Test on R1 (WCR), TWSI (WSI), SemEval-2013 task 13 (WSI)
- We fix number of senses to be 2 for each word
- Compare with
 - Random,
 - Single sense (with Word2Vec),
 - MSSG (only doing EM refinement) [2],
 - WG (clustering related words) [3],
 - WG+EM

[3] Maria Pelevina, Nikolay Arefiev, Chris Biemann, and Alexander Panchenko. 2016. Making sense of word embeddings. In Proceedings of the 1st Workshop on Representation Learning for NLP, Rep4NLP@ACL 2016, Berlin, Germany, August 11, 2016.

Experiment Results

- Our method performs similarly compared with STOA², while capturing less frequent senses better
 - Using global topics won't hurt performance due to bad resolution

Model	TWSI			balanced TWSI		
WIOUCI	Р	R	F1	Р	R	F 1
MSSG rnd	66.1	65.7	65.9	33.9	33.7	33.8
MSSG	66.2	65.8	66.0	34.3	34.2	34.2
WG	68.6	68.1	68.4	38.7	38.5	38.6
WG+EM	68.3	67.8	68.0	38.4	38.2	38.3
DIVE rnd	63.4	63.0	63.2	33.4	33.2	33.3
DIVE (100)	67.6	67.2	67.4	39.7	39.5	39.6
DIVE (300)	67.4	66.9	67.2	39.0	38.8	38.9

Table 3: Results obtained on the TWSI task (%), where P is precision and R is recall. MSSG rnd and DIVE rnd are baselines which randomly assign sense given inventory built by MSSG and DIVE, respectively.

Skip-gram	WG	WG+EM
52.7	42.1	59.1
MSSG	DIVE (100)	DIVE (300)
60	63.2	62.6

Table 2: Precision@1 on the WCR R1 (%).

Model	JI	Tau	WNDCG	FNMI	FB-C
All-1	19.2	60.9	28.8	0	62.3
Rnd	21.8	62.8	28.7	2.8	47.4
MSSG	22.2	62.9	29.0	3.2	48.9
WG	21.2	61.2	29.0	1.6	58.1
WG+EM	21.0	61.5	29.0	1.3	57.8
DIVE (100)	21.9	61.9	29.3	3.1	50.6
DIVE (300)	22.1	62.8	29.1	3.5	49.9

Table 4: Results obtained on the SemEval 2013 task (%), where JI is Jaccard Index, FNMI is Fuzzy NMI, and FB-C is Fuzzy B-Cubed. All-1 is to assign all senses to be the same and Rnd is to randomly assign all senses to 2 groups.

²Maybe slightly worse than AdaGram, which determines number of senses dynamically, which we haven't did

Summary

- Clustering mentions or most related words is expansive
- By the help of DIVE, similarity measurement can depend on the target word, which makes clustering topics practical

Future Work

- Make our implementation more efficient
- Dynamically determine the number of clusters
- Use downstream task (e.g., sentiment classification) to guide clustering process

Appendix

Flow Chart

More Examples

tank —	1	tank, cylinder, wheel, engine, steel	industry, export, industrial, economy, company
	1	acid, carbon, product, use, zinc	network, user, server, datum, protocol
	2	army, force, infantry, military, battle	aircraft, navy, missile, ship, flight
		however, attempt, result, despite, fail	war, german, ii, germany, world
race	1	win, world, cup, play, championship	two, one, three, four, another
	2	railway, line, train, road, rail	car, company, sell, manufacturer, model
	3	population, language, ethnic, native, people	female, age, woman, male, household
run	1	system, architecture, develop, base, language	access, need, require, allow, program
	2	railway, line, train, road, rail	also, well, several, early, see
	3	game, team, season, win, league	game, player, run, deal, baseball
tablet	1	bc, source, greek, ancient, date	book, publish, write, work, edition
	2	use, system, design, term, method	version, game, release, original, file
	3	system, blood, vessel, artery, intestine	patient, symptom, treatment, disorder, may