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Exploring Visual and Motion Saliency for
Automatic Video Object Extraction

Wei-Te Li, Haw-Shiuan Chang, Kuo-Chin Lien, Hui-Tang Chang, and Yu-Chiang Frank Wang

Abstract— This paper presents a saliency-based video object
extraction (VOE) framework. The proposed framework aims to
automatically extract foreground objects of interest without any
user interaction or the use of any training data (i.e., not limited
to any particular type of object). To separate foreground and
background regions within and across video frames, the proposed
method utilizes visual and motion saliency information extracted
from the input video. A conditional random field is applied to
effectively combine the saliency induced features, which allows us
to deal with unknown pose and scale variations of the foreground
object (and its articulated parts). Based on the ability to preserve
both spatial continuity and temporal consistency in the proposed
VOE framework, experiments on a variety of videos verify that
our method is able to produce quantitatively and qualitatively
satisfactory VOE results.

Index Terms— Conditional random field (CRF), video object
extraction (VOE), visual saliency.

I. INTRODUCTION

AT A GLANCE, human can easily determine the subject
of interest in a video, even though that subject is

presented in an unknown or cluttered background or even
has never been seen before. With the complex cognitive
capabilities exhibited by human brains, this process can be
interpreted as simultaneous extraction of both foreground and
background information from a video. Many researchers have
been working toward closing the gap between human and
computer vision. However, without any prior knowledge on the
subject of interest or training data, it is still very challenging
for computer vision algorithms to automatically extract the
foreground object of interest in a video. As a result, if one
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needs to design an algorithm to automatically extract the
foreground objects from a video, several tasks need to be
addressed.

1) Unknown object category and unknown number of the
object instances in a video.

2) Complex or unexpected motion of foreground objects
due to articulated parts or arbitrary poses.

3) Ambiguous appearance between foreground and back-
ground regions due to similar color, low contrast, insuf-
ficient lighting, etc. conditions.

In practice, it is infeasible to manipulate all possible
foreground object or background models beforehand. How-
ever, if one can extract representative information from
either foreground or background (or both) regions from
a video, the extracted information can be utilized to dis-
tinguish between foreground and background regions, and
thus the task of foreground object extraction can be
addressed. As discussed later in Section II, most of the
prior works either consider a fixed background or assume
that the background exhibits dominant motion across video
frames. These assumptions might not be practical for real-
world applications, since they cannot generalize well to
videos captured by freely moving cameras with arbitrary
movements.

In this paper, we propose a robust video object extraction
(VOE) framework, which utilizes both visual and motion
saliency information across video frames. The observed
saliency information allows us to infer several visual and
motion cues for learning foreground and background models,
and a conditional random field (CRF) is applied to auto-
matically determines the label (foreground or background) of
each pixel based on the observed models. With the ability
to preserve both spatial and temporal consistency, our VOE
framework exhibits promising results on a variety of videos,
and produces quantitatively and qualitatively satisfactory per-
formance. While we focus on VOE problems for single-
concept videos (i.e., videos which have only one object
category of interest presented), our proposed method is able
to deal with multiple object instances (of the same type) with
pose, scale, etc. variations. Fig. 1 illustrates the overview of
our proposed VOE framework.

The remainder of this paper is organized as follows.
Section II reviews recent works on video object extraction
and highlights the contributions of our method. Details of our
proposed VOE framework are presented in Sections III and IV.
Section V shows our empirical results on several types of
video data, and both qualitative and quantitative results are
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Fig. 1. Overview of our proposed VOE framework.

presented to support the effectiveness and robustness of our
method. Finally, Section VI concludes this paper.

II. RELATED WORK

In general, one can address VOE problems using supervised
or unsupervised approaches. Supervised methods require prior
knowledge on the subject of interest and need to collect
training data beforehand for designing the associated VOE
algorithms. For example, Wu and Nevatia [1] and Lin and
Davis [2] both decomposed an object shape model in a
hierarchical way to train object part detectors, and these
detectors are used to describe all possible configurations of the
object of interest (e.g. pedestrians). Another type of supervised
methods require user interaction for annotating candidate fore-
ground regions. For example, image segmentation algorithms
proposed in [3], [4] focused on an interactive scheme and
required users to manually provide the ground truth label
information. For videos captured by a monocular camera,
methods such as Criminisi et al., Yin et al. [5], [6] applied a
conditional random field (CRF) maximizing a joint probability
of color, motion, etc. models to predict the label of each
image pixel. Although the color features can be automatically
determined from the input video, these methods still need
the user to train object detectors for extracting shape or
motion features. Recently, researchers proposed to use some
preliminary strokes to manually select the foreground and
background regions, and they utilized such information to
train local classifiers to detect the foreground objects [7], [8].
While these works produce promising results, it might not be
practical for users to manually annotate a large amount of
video data.

On the other hand, unsupervised approaches do not train
any specific object detectors or classifiers in advance. For
videos captured by a static camera, extraction of foreground
objects can be treated as a background subtraction problem.
In other words, foreground objects can be detected simply by
subtracting the current frame from a video sequence [9], [10].
However, if the background is consistently changing or
is occluded by foreground objects, background modeling
becomes a very challenging task. For such cases, researchers
typically aim at learning the background model from the
input video, and the foreground objects are considered as

outliers to be detected. For example, an autoregression moving
average model (ARMA) that estimates the intrinsic appear-
ance of dynamic textures and regions was proposed in [11],
and it particularly dealt with scenarios in which the back-
ground consists of natural scenes like sea waves or trees.
Sun et al. [12] utilized color gradients of the background
to determine the boundaries of the foreground objects. Some
unsupervised approaches aim at observing features associated
with the foreground object for VOE. For example, graph-based
methods [13], [14] identify the foreground object regions by
minimizing the cost between adjacent hidden nodes/pixels in
terms of color, motion, etc. information. More specifically,
one can segment the foreground object by dividing a graph
into disjoint parts whose total energy is minimized without
using any training data. While impressive results were reported
in [13], [14], these approaches typically assume that the
background/camera motion is dominant across video frames.
For general videos captured by freely moving cameras, these
methods might not generalize well (as we verify later in
experiments). Different from graph-based methods, Leordeanu
and Collins [15] proposed to observe the co-occurrences
of object features to identify the foreground objects in an
unsupervised setting. Although promising results under pose,
scale, occlusion, etc. variations were reported, their approach
was only able to deal with rigid objects (like cars).

Since Itti et al. [16] first derived the visual saliency of a
single image, numerous works have been proposed to extract
the saliency information of images for the tasks of compres-
sion, classification, or segmentation. For example, Harding and
Robertson [17] demonstrate that the visual saliency can be
utilized to improve image compression ratio by combining
SURF features and task-dependent prior knowledge. Unlike
compression or classification problems which might utilize
task or object category information for deriving the associated
saliency, general saliency detection or image segmentation
tasks are solved in an unsupervised setting. For example,
based on spectrum analysis, Hou and Zhang [18] utilized the
spectral residual as saliency information, while Guo et al. [19]
advanced the phase part of the spectrum together with Quater-
nion Fourier Transform for saliency detection. Liu et al. [20]
considered contrast information and color histogram of dif-
ferent image regions in multiple scales to detect local and
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global image saliency. Achanta and Süsstrunk [21] computed
the saliency by taking symmetric surrounding pixels into con-
sideration and averaging the color differences between pixels
within each region. Goferman et al. [22] applied multi-scale
patches and calculated both color differences and locations
between different patches. Zhai and Shah [23] constructed
spatial and temporal saliency maps by using a spatiotemporal
attention model. Based on local image contrast, Ma and
Zhang [24] determined the salient regions by fuzzy growing
which extracts regions or objects of interest when forming the
saliency map. Recently, Wang et al. [25] proposed a biological
inspired approached and derived visual saliency based on site
entropy rate for saliency detection. Nevertheless, finding visual
saliency in images or video frames would provide promising
results and infer the region of the foreground objects. How-
ever, since real-world videos might encounter low contrast or
insufficient lighting, etc. problems, one might not be able to
obtain desirable visual saliency maps for identifying candidate
foreground objects. As a result, one cannot simply apply visual
saliency methods for segmenting foreground objects in real-
world videos.

A. Our Contributions

In this paper, we aim at automatically extracting foreground
objects in videos which are captured by freely moving cam-
eras. Instead of assuming that the background motion is dom-
inant and different from that of the foreground as [13], [14]
did, we relax this assumption and allow foreground objects to
be presented in freely moving scenes. We advance both visual
and motion saliency information across video frames, and a
CRF model is utilized for integrating the associated features
for VOE (i.e., visual saliency, shape, foreground/background
color models, and spatial/temporal energy terms). From our
quantitative and qualitative experiments, we verify that our
VOE performance exhibits spatial consistency and temporal
continuity, and our method is shown to outperform state-of-
the-art unsupervised VOE approaches. It is worth noting that,
our proposed VOE framework is an unsupervised approach,
which does not require the prior knowledge (i.e., training
data) of the object of interest nor the user interaction for any
annotation.

III. AUTOMATIC OBJECT MODELING AND EXTRACTION

Most existing unsupervised VOE approaches assume the
foreground objects as outliers in terms of the observed motion
information, so that the induced appearance, color, etc. features
are utilized for distinguishing between foreground and back-
ground regions. However, these methods cannot generalize
well to videos captured by freely moving cameras as discussed
earlier. In this work, we propose a saliency-based VOE frame-
work which learns saliency information in both spatial (visual)
and temporal (motion) domains. By advancing conditional
random fields (CRF), the integration of the resulting features
can automatically identify the foreground object without the
need to treat either foreground or background as outliers. Fig. 1
shows the proposed VOE framework, and we now detail each
step in the following subsections.

(a) (b) (c)

Fig. 2. Example of visual saliency calculation. (a) Original video frame.
(b) Visual saliency of (a) derived by (1). (c) Visual saliency of (a) refined
by (2).

A. Determination of Visual Saliency

To extract visual saliency of each frame, we perform image
segmentation on each video frame and extract color and
contrast information. In our work, we advance Turbopixels
proposed by [26] for segmentation, and the resulting image
segments (superpixels) are applied to perform saliency detec-
tion. The use of Turbopixels allows us to produce edge-
preserving superpixels with similar sizes, which would achieve
improved visual saliency results as verified later. For the kth
superpixel rk , we calculate its saliency score S(rk) as follows:

S(rk) =
∑

rk �=ri

exp(Ds(rk, ri )/σ
2
s )ω(ri )Dr (rk , ri )

≈
∑

rk �=ri

exp(Ds(rk, ri )/σ
2
s )Dr (rk, ri ) (1)

where Ds is the Euclidean distance between the centroid of rk

and that of its surrounding superpixels ri , while σs controls the
width of the kernel. The parameter ω(ri ) is the weight of the
neighbor superpixel ri , which is proportional to the number
of pixels in ri . Compared to [27], ω(ri ) can be treated as
a constant for all superpixels due to the use of Turbopixels
(with similar sizes). The last term Dr (rk, ri ) measures the
color difference between rk and ri , which is also in terms
of Euclidean distance.

As suggested by [22], we consider the pixel i as a salient
point if its saliency score satisfies S(i) > 0.8 ∗ max(S), and
the collection of the resulting salient pixels will be considered
as a salient point set. Since image pixels which are closer to
this salient point set should be visually more significant than
those which are farther away, we further refine the saliency
Ŝ(i) for each pixel i as follows:

Ŝ(i) = S(i) ∗ (1 − dist(i)/distmax) (2)

where S(i) is the original saliency score derived by (1), and
dist(i) measures the nearest Euclidian distance to the salient
point set. We note that distmax in (2) is determined as the
maximum distance from a pixel of interest to its nearest salient
point within an image, thus it is an image-dependent constant.
An example of visual saliency calculation is shown in Fig. 2.

B. Extraction of Motion-Induced Cues

1) Determination of Motion Saliency: We now discuss
how we determine the motion saliency, and how we extract
the associated cues for VOE purposes. Unlike prior works
which assume that either foreground or background exhibits
dominant motion, our proposed framework aims at extracting
motion salient regions based on the retrieved optical flow
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(a) (b)

Fig. 3. Motion saliency calculated for Fig. 2. (a) Calculation of the optical
flow. (b) Motion saliency derived from (a).

information. To detect each moving part and its corresponding
pixels, we perform dense optical-flow forward and backward
propagation [28] at each frame of a video. A moving pixel qt

at frame t is determined by

qt = q̂t, t−1

⋂
q̂t, t+1 (3)

where q̂ denotes the pixel pair detected by forward or back-
ward optical flow propagation. We do not ignore the frames
which result in a large number of moving pixels at this stage
as [13], [14] did, and thus our setting is more practical for
real-world videos captured by freely-moving cameras.

After determining the moving regions, we propose to derive
the saliency scores for each pixel in terms of the associ-
ated optical flow information. Inspired by visual saliency
approaches like [27], we apply our proposed algorithms in (1)
and (2) on the derived optical flow results to calculate the
motion saliency M(i, t) for each pixel i at frame t, and the
saliency score at each frame is normalized to the range of [0, 1]
(see Fig. 3 for example). It is worth noting that, when the
foreground object exhibits significant movements (compared
to background), its motion will be easily captured by optical
flow and thus the corresponding motion salient regions can be
easily extracted. On the other hand, if the camera is moving
and thus results in remarkable background movements, the
proposed motion saliency method will still be able to identify
motion salient regions (associated with the foreground object),
as verified later by our experiments. Compare Figs. 1(a)
and (b), we see that the motion saliency derived from the
optical flow has a better representative capability in describing
the foreground regions than the direct use of the optical flow
does. Another example is shown in Fig. 3, in which we
observe that the foreground object (the surfer) is significantly
more salient than the moving background in terms of motion.
From the above discussions, we consider motion saliency as
an important and supplementary information for identifying
foreground objects.

2) Learning of Shape Cues: Although motion saliency
allows us to capture motion salient regions within and across
video frames, those regions might only correspond to moving
parts of the foreground object within some time interval. If
we simply assume the foreground should be near the high
motion saliency region as the method in [13] did, we cannot
easily identify the entire foreground object. Since it is typi-
cally observed that each moving part of a foreground object
forms a complete sampling of the entire foreground object
(e.g., same assumption is made in [5], [6], [13], [14]), we
advance part-based shape information induced by motion cues
for characterizing the foreground object.

(a)

(b)

(c)

Fig. 4. Visualization of sparse shape representation. (a) Example codewords
for sparse shape representation. (b) Corresponding image patches (only top 5
matches shown). (c) Corresponding masks for each codeword.

To describe the motion salient regions, we convert the
motion saliency image into a binary output and extract the
shape information from the motion salient regions. More
precisely, we first binarize the aforementioned motion saliency
M(i, t) into Mask(i, t) using a threshold of 0.25. We divide
each video frame into disjoint 8 × 8 pixel patches. For each
image patch, if more than 30% of its pixels are with high
motion saliency (i.e., pixel value of 1 in the binarized out-
put), we compute the histogram of oriented gradients (HOG)
descriptors with 4 × 4 = 16 grids for representing its shape
information. To capture scale invariant shape information, we
further downgrade the resolution of each frame and repeat the
above process. We choose the lowest resolution of the scaled
image as a quarter of that of the original one. We note that
a similar setting for scale invariance has also been applied
in [29] when extracting the HOG descriptors.

Since the use of sparse representation has been shown to be
very effective in many computer vision tasks [30], we learn an
over-complete codebook and determine the associated sparse
representation of each HOG. Now, for a total of N HOG
descriptors calculated for the above motion-salient patches
{hn, n = 1, 2, . . . , N} in a p-dimensional space, we construct
an over-complete dictionary Dp × K which includes K basis
vectors, and we determine the corresponding sparse coefficient
αn of each HOG descriptor. Therefore, the sparse coding
problem can be formulated as

min
D,α

1

N

N∑

n=1

1

2
||hn − Dαn||22 + λ||αn||1 (4)

where λ balances the sparsity of αn and the l2-norm recon-
struction error. We use the software developed by [31] to solve
the above problem. Fig. 4(a) shows example basis vectors
(codewords) in terms of image patches. We note that each
codeword is illustrated by averaging image patches with the
top 15 αn coefficients (see examples illustrated in Fig. 4(b),
in which only the top 5 matches are shown). To alleviate
the possible presence of background in each codeword k, we
combine the binarized masks of the top 15 patches using
the corresponding weights αn to obtain the map Mk . As a
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(a) (b)

Fig. 5. Shape likelihood reconstructed by sparse shape representation.
(a) Original frame. (b) Shape likelihood.

result, the moving pixels within each map (induced by motion
saliency) has non-zero pixel values, and the remaining parts
of that patch are considered as static background and thus are
zeroes. Fig. 4(c) shows example results for each codeword
shown in Fig. 4(a).

After obtaining the dictionary and the masks to represent the
shape of foreground object, we use them to encode all image
patches at each frame. This is to recover non-moving regions
of the foreground object which does not have significant
motion and thus cannot be detected by motion cues. For
each image patch, we derive its sparse coefficient vector α,
and each entry of this vector indicates the contribution of
each shape codeword. Correspondingly, we use the associated
masks and their weight coefficients to calculate the final mask
for each image patch. Finally, the reconstructed image at frame
t using the above maps Mk can be denoted as foreground shape
likelihood X̂S

t , which is calculated as follows:

X̂S
t =

∑

n∈It

K∑

k=1

(αn,k · Mk) (5)

where αn,k is the weight for the nth patch using the kth
codeword.

Fig. 5 shows an example of the reconstruction of a video
frame using the motion-induced shape information of the
foreground object. We note that X̂S

t serves as the likelihood
of foreground object at frame t in terms of shape information.

3) Learning of Color Cues: Besides the motion-induced
shape information, we also extract both foreground and back-
ground color information for improved VOE performance.
According to the observation and the assumption that each
moving part of the foreground object forms a complete sam-
pling of itself, we cannot construct foreground or background
color models simply based on visual or motion saliency detec-
tion results at each individual frame; otherwise, foreground
object regions which are not salient in terms of visual or
motion appearance will be considered as background, and the
resulting color models will not be of sufficient discriminating
capability. In our work, we utilize the shape likelihood X̂S

t
obtained from the previous step, and we threshold this likeli-
hood by 0.5 to determine the candidate foreground (FSshape)
and background (BSshape) regions. In other words, we consider
color information of pixels in FSshape for calculating the
foreground color GMM, and those in BSshape for deriving the
background color GMM.

Once these candidate foreground and background regions
are determined, we use Gaussian mixture models (GMM)
GC f and GCb to model the RGB distributions for each
model. The parameters of GMM such as mean vectors
and covariance matrices are determined by performing an

Fig. 6. CRF for foreground object segmentation.

expectation-maximization (EM) algorithm. Finally, we inte-
grate both foreground and background color models with
visual saliency and shape likelihood into a unified framework
for VOE.

IV. CONDITION RANDOM FIELD FOR VOE

A. Feature Fusion via CRF

Utilizing an undirected graph, conditional random field
(CRF) [32] is a powerful technique to estimate the structural
information (e.g. class label) of a set of variables with the
associated observations. For video foreground object segmen-
tation, CRF has been applied to predict the label of each
observed pixel in an image I [13], [14]. As illustrated in Fig. 6,
pixel i in a video frame is associated with observation zi ,
while the hidden node Fi indicates its corresponding label (i.e.
foreground or background). In this framework, the label Fi is
calculated by the observation zi , while the spatial coherence
between this output and neighboring observations z j and labels
Fj are simultaneously taken into consideration. Therefore,
predicting the label of an observation node is equivalent to
maximizing the following posterior probability function

p(F |I, ψ) ∝ exp

⎧
⎨

⎩−
⎛

⎝
∑

i∈I

(ψi )+
∑

i∈I, j∈Neighbor

(ψi, j )

⎞

⎠

⎫
⎬

⎭
(6)

where ψi is the unary term which infers the likelihood of Fi

with observation zi . ψi, j is the pairwise term describing the
relationship between neighboring pixels zi and z j , and that
between their predicted output labels Fi and Fj . Note that the
observation z can be represented by a particular feature, or
a combination of multiple types of features (as our proposed
framework does).

To solve a CRF optimization problem, one can convert
the above problem into an energy minimization task, and the
object energy function E of (6) can be derived as

E = − log(p)

=
∑

i∈I

(ψi )+
∑

i∈I
j∈Neighbor

(ψi, j )

= Eunary + Epairwise. (7)

In our proposed VOE framework, we define the shape energy
function ES in terms of shape likelihood X̂S

t (derived by (5))
as one of the unary terms

ES = −ws log(X̂S
t ). (8)

In addition to shape information, we need incorporate visual
saliency and color cues into the introduced CRF framework.
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As discussed earlier, we derive foreground and background
color models for VOE, and thus the unary term EC describing
color information is defined as follows:

EC = wc(ECF − ECB). (9)

Note that the foreground and background color GMM models
GC f and GCb (discussed in Section III-B) are utilized to
derive the associated energy terms ECF and ECB, which are
calculated as {

ECF = − log
(∑

i∈I GC f (i)
)

ECB = − log
(∑

i∈I GCb(i)
)
.

As for the visual saliency cue at frame t, we convert the
visual saliency score Ŝt derived in (2) into the following energy
term EV :

EV = −wv log(Ŝt ). (10)

We note that in the above equations, parameters ws , wc, and
wv are the weights for shape, color, and visual saliency cues,
respectively. These weights control the contributions of the
associated energy terms of the CRF model for performing
VOE. It is also worth noting that, Liu and Gleicher [13]
only considers the construction of foreground color models
for VOE. As verified by [14], it can be concluded that the
disregard of background color models would limit the perfor-
mance of VOE, since the only use of foreground color model
might not be sufficient for distinguishing between foreground
and background regions. In the proposed VOE framework, we
now utilize multiple types of visual and motion salient features
for VOE, and our experiments will confirm the effectiveness
and robustness of our approach on a variety of real-world
videos.

B. Preserving Spatio-Temporal Consistency

In the same shot of a video, an object of interest can be
considered as a compact space-time volume, which exhibits
smooth changes in location, scale, and motion across frames.
Therefore, how to preserve spatial and temporal consistency
within the extracted foreground object regions across video
frames is a major obstacle for VOE. Since there is no guaran-
tee that combining multiple motion-induced features would
address the above problem, we need to enforce additional
constraints in the CRF model in order to achieve this goal.

1) Spatial Continuity for VOE: When applying a pixel-level
prediction process for VOE (like ours and some prior VOE
methods do), the spatial structure of the extracted foreground
region is typically not considered during the VOE process.
This is because that the prediction made for one pixel is not
related to those for its neighboring ones. To maintain the
spatial consistency for the extracted foreground object, we
add a pairwise term in our CRF framework. The introduced
pairwise term Ei, j is defined as

Ei, j =
∑

i∈I
j ∈ Neighbor

|Fi − Fj |

×
(
λ1 + λ2

(
exp

(
−‖zi − z j‖

β

)))
. (11)

(a) (b) (c)

Fig. 7. (a) Original frame. Example VOE results (b) with and (c) without
imposing the temporal consistency term for CRF.

Note that β is set as the averaged pixel color difference of all
pairs of neighboring pixels. In (11), λ1 is a data-independent
Ising prior to smoothen the predicted labels, and λ2 is to relax
the tendency of smoothness if color observations zi and z j

form an edge (i.e. when ‖zi − z j ‖ is large). This pairwise
term is able to produce coherent labeling results even under
low contrast or blurring effects, and this will be verified later
in Section V.

2) Temporal Consistency for VOE: Although we exploit
both visual and motion saliency information for determin-
ing the foreground object, the motion-induced features such
as shape and foreground/background color GMM models
might not be able to well describe the changes of fore-
ground objects across videos due to issues such as motion
blur, compression loss, or noise/artifacts presented in video
frames. To alleviate this concern, we choose to propagate the
foreground/background shape likelihood and CRF prediction
outputs across video frames for preserving temporal continuity
in our VOE results. To be more precise, when constructing
the foreground and background color GMM models, the cor-
responding pixel sets FS and BS will not only be produced by
the shape likelihood FSshape and BSshape at the current frame,
those at the previous frame (including the CRF prediction
outputs F̂foreground and F̂background) will be considered to update
FS and BS as well. In other words, we update foreground and
background pixel sets FS and BS at frame t + 1 by

{
FSt+1 = FSshape(t + 1)

⋃
FSshape(t)

⋃
F̂foreground(t)

BSt+1 = BSshape(t + 1)
⋃

BSshape(t)
⋃

F̂background(t)
(12)

where F̂foreground(t) indicates the pixels at frame t to be pre-
dicted as foreground, and FSshape(t) is the set of pixels whose
shape likelihood is above 0.5 as described in Section III.B3.
Similar remarks apply for F̂background(t) and BSshape(t). We
show an example in Fig. 7 to verify the use of such temporal
terms when updating our VOE model.

Finally, by integrating (8), (9), (10), and (11), plus the intro-
duced terms for preserving spatial and temporal information,
the objective energy function (7) can be updated as

E = Eunary + Epairwise

=
(

ES + ECF − ECB + EV)
+ Ei, j

= ES + EC + EV + Ei, j . (13)

To minimize (13), one can apply graph-based energy min-
imization techniques such as max-flow/min-cut algorithms.
When the optimization process is complete, the label-
ing function output F would indicate the class label
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(foreground or background) of each observed pixel at each
frame, and thus the VOE problem is solved accordingly.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments on a variety of
videos. We first verify the integration of multiple types
of features for VOE, and show that it outperforms the use
of a particular type of feature. We also compare our derived
saliency maps and segmentation results to those produced by
other saliency based or state-of-the-art supervised or unsuper-
vised VOE methods. Both qualitative and quantitative results
will be presented to support the effectiveness and robustness
of our proposed method.

A. Data Sets and Parameters

We consider eight different video sequences from three
different datasets ( [33]– [35]) in our experiments. Five out
of the eight videos (Girl, Parachute, Penguin, Fox, Redbird)
are selected from [33] and [34]. To quantitative evaluate the
VOE performance, we use the ground truth provided with the
original data (i.e., label information at the pixel level) except
for the Penguin sequence. This is because that the ground truth
information for the Penguin sequence (provided by [33]) is
designed for object tracking in a weakly supervised setting, in
which only one penguin is manually annotated by the original
user at each frame. As mentioned in [36]), this might not
be preferable since all the penguins should be considered as
foreground objects. Therefore, we manually label the ground
truth for that sequence. We also note that, videos in [35] do
not contain any foreground or background information, and
thus we also manually label their ground-truth information.
It is worth noting that, both Penguin and Beach sequences
are used to demonstrate that our proposed method is able to
handle videos with multiple object instances (i.e., one type of
foreground objects but multiple instances are presented).

To learn the CRF model, we set λ1 : λ2 ≈ 1:5 for
the pairwise term. As for different energy unary terms, we
have two sets of parameter: wv = 2ws = 2wc = 0.5 and
wv = ws = wc = 0.33 for weighting visual saliency, shape,
and color, respectively. We select the better results for our
evaluation. To construct the foreground and background color
models with GMM, we consider the number of Gaussian
mixtures as 10 for both cases.

B. Integration of Multiple Motion-Induced Features for VOE

We first verify the effectiveness of fusing multiple types
of features selected in our proposed framework. As shown
in Fig. 1 and discussed in Section III, we consider visual
saliency together with two motion-induced cues (i.e., shape
and color) in a unified CRF model for predicting the label
information of each pixel. To confirm that it is necessary to
combine the features considered, Fig. 8 shows example video
frames of three videos (Beach, Girl, Penguin) and their VOE
results using single or multiple types of features (i.e., shape,
color, and visual saliency). We note that, for the VOE results
shown in Fig. 8 using a single type of feature, both pairwise

Fig. 8. VOE results using different feature cues (the CRF pairwise term is
considered for all cases for fair comparisons).

and temporal terms are enforced for the corresponding CRF
models. In other words, the only difference between those
results and that of ours is the use of one or multiple unary
terms describing the associated features.

VOE results using only shape, color, and visual saliency
are shown in Fig. 8(a)–(c), respectively, while those produced
by our approach are shown in Fig. 8(d). For the Beach
video (first row in Fig. 8), since background motion due to
sea waves is easily detected by optical flow, plus the high
visual contrast between the seashore and foreground objects,
the corresponding features are not sufficient to discriminate
between the foreground and background regions. Although
the motion-induced foreground and background color cues
share a portion of the sea (background), our definition of color
energy term in (9) is able to disregard the associated common
Gaussian components. As a result, only the use of color cues
could produce satisfactory results. For the Girl video shown
in the second row of Fig. 8, both foreground and background
exhibit remarkable motion, while the visual contrast between
them is not significant. As a result, the use of any single
type of feature was not able to achieve proper segmentation
results. Finally, for the Penguin video shown in the last row
in Fig. 8, the use of visual saliency was not able to identify
the body parts of the penguins, while shape and color cues
extracted foreground objects with missing parts. Nevertheless,
our proposed framework integrating all three types of features
can be observed to achieve the most satisfactory VOE results
for all three videos, as shown in the last column of Fig. 8.

C. Comparisons With Saliency-Based Approaches

We now compare our method with state-of-the-art visual
saliency detection approaches [20]–[23], [27]. In particular,
we consider CA (context-aware) proposed by Goferman et al.
[22], LD (learning to detect) proposed by Liu et al. [20],
ST (spatio-temporal cues) of Zhai and Shah [23], MSSS
(maximum symmetric surround saliency) of Achanta and
Süsstrunk [21], HC (histogram-based contrast) and RC
(region-based contrast) proposed by Cheng et al. [27].

From the visual saliency results shown in Fig. 9, it can be
observed that our approach was able to extract visual salient
regions, even for videos with low visual contrast (e.g., Girl
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Fig. 9. Selected video frames and their visual saliency results produced by different methods.

TABLE I

COMPARISONS OF MAXIMUM F-MEASURE SCORES FOR DIFFERENT VISUAL SALIENCY DETECTION APPROACHES

Metric \ Methods CA [22] LD [20] ST [23] MSSS [21] HC [27] RC [27] Ours

F-measure 0.9100% 0.8667% 0.6222% 0.7839% 0.7032% 0.8067% 0.8617%

and Penguin). Later we will verify the use of our derived
visual saliency along with motion-induced cues would produce
promising VOE results.

In order to quantitatively compare the above results, we
subsample the number of video frames for each sequence
by a factor of 10 and perform quantitative evaluation. While
one could use precision-recall curves to evaluate the perfor-
mance of each method, the goal of this work is to utilize
the retrieved visual saliency information for VOE. There-
fore, we choose to provide the maximum F-measure scores
(i.e., 2 · (Precision · Recall/Precision + Recall)) produced by
different methods, as listed in Table I.

From the results shown in Table I, we see that our approach
did not produce the highest F-measure scores in terms of
visual saliency detection, since both CA [22] and LD [20]
performed slightly better than ours. As pointed out in [27],
both CA and LD tend to produce higher saliency values along
object edges due to the use of local contrast information.
However, if the scale of the foreground object is large, high
visual saliency along object edges will not be able to provide
sufficient visual cues for VOE. In [27], RC has been shown to
exhibit better capabilities than CA/LD on benchmark datasets
for visual saliency detection. Moreover, both CA and LD are
computationally more expensive than RC and ours due to
the use of multi-scale patches for feature extraction/selection.

Based on the above quantitative and qualitative evaluations,
the use of our proposed visual saliency detection algorithm
for VOE can be verified.

D. Comparison With Unsupervised VOE Methods

Since our proposed VOE method is able to automat-
ically extract foreground objects of interests without any
prior knowledge or the need to collect training data in
advance, we compare our results with those produced by three
state-of-the-art unsupervised VOE approaches. We first con-
sider the approach of proposed in [13], which also applies
CRF to combine color and locality features for VOE. How-
ever, no background color model and temporal consistency is
considered in their proposed framework. Since our saliency
detection stage is inspired by [27], it is necessary for us to
consider the approach of [27], followed by performing saliency
cut (i.e., an iterative GrabCut technique [27]) to segment the
detected visually salient regions as foreground objects. We
also compare our method to a recently proposed unsupervised
VOE approach of [36]. Based on the image segmentation
and object ranking results of [37], the approach of [36] aims
at automatically discovering the key image segments across
video frames as foreground objects using multiple appearance
and motion cues. The code for [27] and [36] is available at
the websites of the authors.
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Fig. 10. Example VOE results of different unsupervised approaches. (a) Original video frames. (b) Our method. (c) Liu and Gleicher [13]. (d) RC+saliency
cut [27]. (e) Lee et al. [36].

To quantitatively evaluate the VOE performance, we
consider the use of mis-segmentation rates ε(S) =
|XOR(S, GT))|/F · P , where S is the VOE output image, GT
is the ground-truth, F is the total number of video frames, and
P is the total number of pixels in each frame. Table II lists the
mis-segmentation rates of different videos for all approaches

considered. From Table II and Fig. 10, it can be seen that
we achieved significantly better or comparable VOE results on
most of the video sequences. We also verify that our proposed
method is able to handle videos captured by freely moving
camera (e.g., Girl), or with complex background motion (e.g.,
Waterski and Surfer). We also produce satisfactory results on
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TABLE II

COMPARISONS OF MIS-SEGMENTATION RATES OF DIFFERENT UNSUPERVISED VOE METHODS. FOR THE METHOD IN [36], WE LIST AVERAGED

MIS-SEGMENTATION RATES WITH AND WITHOUT CONSIDERING THE SEQUENCES FOX AND WATERSKI (AS IN *)

Methods\Sequence Girl Parachute Penguin Fox Redbird Waterski Surfer Beach Avg

Liu and Gleicher [13] 6.31% 5.36% 17.03% 35.32% 28.97% 59.33% 47.5% 14.21% 26.75%
RC+saliency cut [27] 13.42% 9.05% 68.28% 1.98% 1.73% 18.86% 17.82% 6.64% 17.22%
Lee et al. [36] 3.83% 0.13% 1.66% 99.01% 1.19% 75.90% 13.36% 5.14% 25.03/4.22%(*)

Ours 2.30% 0.15% 5.01% 2.22% 1.68% 2.24% 0.38% 1.59% 1.95%

videos with low visual contrast (e.g., Parachute), and those
with articulated foreground objects presented (e.g., Beach).

We note that the method of [13] constructs the foreground
color model from video frames with dominant foreground
motion detection results, and thus only prefers scenarios where
the foreground object exhibits significant motion. Since no
background color model is considered in [13], plus the back-
ground clutter might contribute to motion salient regions, the
lack of discrimination ability between candidate foreground
and background regions makes the method of [13] difficult to
achieve satisfactory VOE results. As for the visual-saliency
based method of [27], it would fail to detect the foreground
object which is not visually salient within a video frame.

We observe that the method of [36] tends to treat foreground
as one single object and thus restricts the generalization for
cases like Beach. This is because the use of objectness for
ranking their image segmentation results for VOE. We note
that this approach had very high mis-segmentation rates for
the sequence Fox, since it detected the background region
as the foreground; as for the sequence Waterski, the VOE
results of [36] were not as good as those reported in [36]
even we direct applied their release code. When comparing
the averaged mis-segmentation rates in Table II, we also list
the result without using these two sequences.

Besides presenting quantitative VOE results, we also pro-
vide qualitative results and comparisons in Fig. 10, and it
can be seen that our approach generally produced satisfactory
results. For the video like Waterski which contains visual and
motion salient regions for both the foreground object (i.e.,
water-skier) and background clutter (e.g., surf), and it will
be very difficult for unsupervised VOE methods to properly
detect the foreground regions even multiple types of visual
and motion induced features are considered. Discrimination
between such challenging foreground and background regions
might require one to observe both visual and motion cues
over a longer period. Or, if the video is with sufficient
resolution, one can consider to utilize trajectory information of
the extracted local interest points for determining the candidate
foreground regions. In such cases, one can expect improved
VOE results.

We finally comment on the computation time of our pro-
posed method. When applying our approach for a video
frame with 320 × 240 pixels (implemented by MATLAB),
it takes about 5 s, 1 min, and 20 s for computing optical
flow, visual/motion saliency, and deriving the shape likelihood,
respectively. About another 1 s is required for inducing the
foreground/background color GMM models and predicting
pixel labels using CRF. While it is possible to accelerate the
implementation by C/C++ for most of the above procedures,

calculation of optical flow is still computationally expensive
even using GPU. Since the goal of this paper is to automat-
ically extract the foreground objects without using training
data or user interaction, real-time processing will be among
future research directions. All unsupervised VOE approaches
considered in this paper (including ours) are performed offline.

VI. CONCLUSION

In this paper, we proposed an automatic VOE approach
which utilizes multiple motion and visual saliency induced
features, such as shape, foreground/background color models,
and visual saliency, to extract the foreground objects in videos.
We advanced a CRF model to integrate the above features, and
additional constraints were introduced into our CRF model for
preserving both spatial continuity and temporal consistency
when performing VOE. Compared with state-of-the-art unsu-
pervised VOE methods, our approach was shown to better
model the foreground object due to the fusion of multiple
types of saliency-induced features. A major advantage of our
proposed method is that we do not require the prior knowledge
of the object of interest (i.e., the need to collect training data),
nor the interaction from the users during the segmentation
progress. Experiments on a variety of videos with highly
articulated objects or complex background presented verified
the effectiveness and robustness of our proposed method.
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